
Think Python
by Allen B. Downey

3rd edition (2024), Green Tree Press

Think Python home page

This PDF version has been assembled by John MacCormick, from printouts of the online Jupyter
notebooks. The notebooks are published under an Attribution-NonCommercial-ShareAlike 4.0
International license, which means that you are free to copy, distribute, and modify them, as long
as you attribute the original work, make your modified version available under a compatible license,
and don’t use it for commercial purposes. This version is made available under the same license.

Note that this version is not the official ebook, which can be purchased from O'Reilly Media, ISBN
1098155432.

This version is intended primarily for use by Dickinson College students in course COMP130.

Because it is packaged from printouts of online materials, this version of the book does not meet
the usual quality standards of an ebook. It is just a concatenation of online content with a
rudimentary table of contents at the start. It may be useful for reviewing material offline. For
detailed understanding of the material, it is strongly recommended to instead work through the
online Jupyter notebooks.

https://greenteapress.com/wp/think-python-3rd-edition/

Table of Contents
Preface

1. Programming as a way of thinking

2. Variables and Statements

3. Functions

4. Functions and Interfaces

5. Conditionals and Recursion

6. Return Values

7. Iteration and Search

8. Strings and Regular Expressions

9. Lists

10. Dictionaries

11. Tuples

12. Text Analysis and Generation

13. Files and Databases

14. Classes and Functions

15. Classes and Methods

16. Classes and Objects

17. Inheritance

18. Python Extras

19. Final thoughts

Detailed Table of Contents
1. Programming as a way of thinking

1.1. Arithmetic operators
1.2. Expressions
1.3. Arithmetic functions
1.4. Strings
1.5. Values and types
1.6. Formal and natural languages
1.7. Debugging
1.8. Glossary
1.9. Exercises

2. Variables and Statements

2.1. Variables
2.2. State diagrams
2.3. Variable names
2.4. The import statement
2.5. Expressions and statements
2.6. The print function
2.7. Arguments
2.8. Comments
2.9. Debugging
2.10. Glossary
2.11. Exercises

3. Functions

3.1. Defining new functions
3.2. Parameters
3.3. Calling functions
3.4. Repetition
3.5. Variables and parameters are local
3.6. Stack diagrams
3.7. Tracebacks
3.8. Why functions?
3.9. Debugging
3.10. Glossary
3.11. Exercises

4. Functions and Interfaces
4.1. The jupyturtle module
4.2. Making a square
4.3. Encapsulation and generalization
4.4. Approximating a circle
4.5. Refactoring
4.6. Stack diagram
4.7. A development plan
4.8. Docstrings
4.9. Debugging
4.10. Glossary
4.11. Exercises

5. Conditionals and Recursion

5.1. Integer division and modulus
5.2. Boolean Expressions
5.3. Logical operators
5.4. if statements
5.5. The else clause
5.6. Chained conditionals
5.7. Nested Conditionals
5.8. Recursion
5.9. Stack diagrams for recursive functions
5.10. Infinite recursion
5.11. Keyboard input
5.12. Debugging
5.13. Glossary
5.14. Exercises

6. Return Values

6.1. Some functions have return values
6.2. And some have None
6.3. Return values and conditionals
6.4. Incremental development
6.5. Boolean functions
6.6. Recursion with return values
6.7. Leap of faith
6.8. Fibonacci
6.9. Checking types
6.10. Debugging
6.11. Glossary
6.12. Exercises

7. Iteration and Search
7.1. Loops and strings
7.2. Reading the word list
7.3. Updating variables
7.4. Looping and counting
7.5. The in operator
7.6. Search
7.7. Doctest
7.8. Glossary
7.9. Exercises

8. Strings and Regular Expressions

8.1. A string is a sequence
8.2. String slices
8.3. Strings are immutable
8.4. String comparison
8.5. String methods
8.6. Writing files
8.7. Find and replace
8.8. Regular expressions
8.9. String substitution
8.10. Debugging
8.11. Glossary
8.12. Exercises

9. Lists

9.1. A list is a sequence
9.2. Lists are mutable
9.3. List slices
9.4. List operations
9.5. List methods
9.6. Lists and strings
9.7. Looping through a list
9.8. Sorting lists
9.9. Objects and values
9.10. Aliasing
9.11. List arguments
9.12. Making a word list
9.13. Debugging
9.14. Glossary
9.15. Exercises

10. Dictionaries
10.1. A dictionary is a mapping
10.2. Creating dictionaries
10.3. The in operator
10.4. A collection of counters
10.5. Looping and dictionaries
10.6. Lists and dictionaries
10.7. Accumulating a list
10.8. Memos
10.9. Debugging
10.10. Glossary
10.11. Exercises

11. Tuples

11.1. Tuples are like lists
11.2. But tuples are immutable
11.3. Tuple assignment
11.4. Tuples as return values
11.5. Argument packing
11.6. Zip
11.7. Comparing and Sorting
11.8. Inverting a dictionary
11.9. Debugging
11.10. Glossary
11.11. Exercises

12. Text Analysis and Generation

12.1. Unique words
12.2. Punctuation
12.3. Word frequencies
12.4. Optional parameters
12.5. Dictionary subtraction
12.6. Random numbers
12.7. Bigrams
12.8. Markov analysis
12.9. Generating text
12.10. Debugging
12.11. Glossary
12.12. Exercises

13. Files and Databases
13.1. Filenames and paths
13.2. f-strings
13.3. YAML
13.4. Shelve
13.5. Storing data structures
13.6. Checking for equivalent files
13.7. Walking directories
13.8. Debugging
13.9. Glossary
13.10. Exercises

14. Classes and Functions

14.1. Programmer-defined types
14.2. Attributes
14.3. Objects as return values
14.4. Objects are mutable
14.5. Copying
14.6. Pure functions
14.7. Prototype and patch
14.8. Design-first development
14.9. Debugging
14.10. Glossary
14.11. Exercises

15. Classes and Methods

15.1. Defining methods
15.2. Another method
15.3. Static methods
15.4. Comparing Time objects
15.5. The __str__ method
15.6. The init method
15.7. Operator overloading
15.8. Debugging
15.9. Glossary
15.10. Exercises

16. Classes and Objects
16.1. Creating a Point
16.2. Creating a Line
16.3. Equivalence and identity
16.4. Creating a Rectangle
16.5. Changing rectangles
16.6. Deep copy
16.7. Polymorphism
16.8. Debugging
16.9. Glossary
16.10. Exercises

17. Inheritance

17.1. Representing cards
17.2. Card attributes
17.3. Printing cards
17.4. Comparing cards
17.5. Decks
17.6. Printing the deck
17.7. Add, remove, shuffle and sort
17.8. Parents and children
17.9. Specialization
17.10. Debugging
17.11. Glossary
17.12. Exercises

18. Python Extras

18.1. Sets
18.2. Counters
18.3. defaultdict
18.4. Conditional expressions
18.5. List comprehensions
18.6. any and all
18.7. Named tuples
18.8. Packing keyword arguments
18.9. Debugging
18.10. Glossary
18.11. Exercises

19. Final thoughts

Preface
Contents

Who Is This Book For?

Goals of the Book

Navigating the Book

What’s new in the third edition?

Getting started

Resources for Teachers

Acknowledgments

You can order print and ebook versions of Think Python 3e from Bookshop.org and Amazon.

Who Is This Book For?
If you want to learn to program, you have come to the right place. Python is one of the best
programming languages for beginners – and it is also one of the most in-demand skills.

You have also come at the right time, because learning to program now is probably easier than
ever. With virtual assistants like ChatGPT, you don’t have to learn alone. Throughout this book,
I’ll suggest ways you can use these tools to accelerate your learning.

This book is primarily for people who have never programmed before and people who have
some experience in another programming language. If you have substantial experience in
Python, you might find the first few chapters too slow.

One of the challenges of learning to program is that you have to learn two languages: one is the
programming language itself; the other is the vocabulary we use to talk about programs. If you
learn only the programming language, you are likely to have problems when you need to
interpret an error message, read documentation, talk to another person, or use virtual assistants.
If you have done some programming, but you have not also learned this second language, I
hope you find this book helpful.

Print to PDF

https://bookshop.org/a/98697/9781098155438
https://www.amazon.com/_/dp/1098155432?smid=ATVPDKIKX0DER&_encoding=UTF8&tag=oreilly20-20&_encoding=UTF8&tag=greenteapre01-20&linkCode=ur2&linkId=e2a529f94920295d27ec8a06e757dc7c&camp=1789&creative=9325

Goals of the Book
Writing this book, I tried to be careful with the vocabulary. I define each term when it first
appears. And there is a glossary that the end of each chapter that reviews the terms that were
introduced.

I also tried to be concise. The less mental effort it takes to read the book, the more capacity you
will have for programming.

But you can’t learn to program just by reading a book – you have to practice. For that reason,
this book includes exercises at the end of every chapter where you can practice what you have
learned.

If you read carefully and work on exercises consistently, you will make progress. But I’ll warn you
now – learning to program is not easy, and even for experienced programmers it can be
frustrating. As we go, I will suggest strategies to help you write correct programs and fix
incorrect ones.

Navigating the Book
Each chapter in this book builds on the previous ones, so you should read them in order and
take time to work on the exercises before you move on.

The first six chapters introduce basic elements like arithmetic, conditionals, and loops. They also
introduce the most important concept in programming, functions, and a powerful way to use
them, recursion.

Chapters 7 and 8 introduce strings – which can represent letter, words, and sentences – and
algorithms for working with them.

Chapters 9 through 12 introduce Python’s core data structures – lists, dictionaries, and tuples –
which are powerful tools for writing efficient programs. Chapter 12 presents algorithms for
analyzing text and randomly generating new text. Algorithms like these are at the core of large
language models (LLMs), so this chapter will give you an idea of how tools like ChatGPT work.

Chapter 13 is about ways to store data in long-term storage – files and databases. As an
exercise, you can write a program that searches a file system and finds duplicate files.

Chapters 14 through 17 introduce object-oriented programming (OOP), which is a way to
organize programs and the data they work with. Many Python libraries are written in object-
oriented style, so these chapters will help you understand their design – and define your own
objects.

The goal of this book is not to cover the entire Python language. Rather, I focus on a subset of
the language that provides the greatest capability with the fewest concepts. Nevertheless,
Python has a lot of features you can use to solve common problems efficiently. Chapter 18
presents some of these features.

Finally, Chapter 19 presents my parting thoughts and suggestions for continuing your
programming journey.

What’s new in the third edition?
The biggest changes in this edition were driven by two new technologies – Jupyter notebooks
and virtual assistants.

Each chapter of this book is a Jupyter notebook, which is a document that contains both
ordinary text and code. For me, that makes it easier to write the code, test it, and keep it
consistent with the text. For you, it means you can run the code, modify it, and work on the
exercises, all in one place. Instructions for working with the notebooks are in the first chapter.

The other big change is that I’ve added advice for working with virtual assistants like ChatGPT
and using them to accelerate your learning. When the previous edition of this book was
published in 2016, the predecessors of these tools were far less useful and most people were
unaware of them. Now they are a standard tool for software engineering, and I think they will be
a transformational tool for learning to program – and learning a lot of other things, too.

The other changes in the book were motivated by my regrets about the second edition.

The first is that I did not emphasize software testing. That was already a regrettable omission in
2016, but with the advent of virtual assistants, automated testing has become even more
important. So this edition presents Python’s most widely-used testing tools, doctest and
unittest , and includes several exercises where you can practice working with them.

My other regret is that the exercises in the second edition were uneven – some were more
interesting than others and some were too hard. Moving to Jupyter notebooks helped me

develop and test a more engaging and effective sequence of exercises.

In this revision, the sequence of topics is almost the same, but I rearranged a few of the chapters
and compressed two short chapters into one. Also, I expanded the coverage of strings to include
regular expressions.

A few chapters use turtle graphics. In previous editions, I used Python’s turtle module, but
unfortunately it doesn’t work in Jupyter notebooks. So I replaced it with a new turtle module
that should be easier to use.

Finally, I rewrote a substantial fraction of the text, clarifying places that needed it and cutting
back in places where I was not as concise as I could be.

I am very proud of this new edition – I hope you like it!

Getting started
For most programming languages, including Python, there are many tools you can use to write
and run programs. These tools are called integrated development environments (IDEs). In
general, there are two kinds of IDEs:

Some work with files that contain code, so they provide tools for editing and running these
files.

Others work primarily with notebooks, which are documents that contain text and code.

For beginners, I recommend starting with a notebook development environment like Jupyter.

The notebooks for this book are available from an online repository at
https://allendowney.github.io/ThinkPython.

There are two ways to use them:

You can download the notebooks and run them on your own computer. In that case, you
have to install Python and Jupyter, which is not hard, but if you want to learn Python, it can
be frustrating to spend a lot of time installing software.

An alternative is to run the notebooks on Colab, which is a Jupyter environment that runs in
a web browser, so you don’t have to install anything. Colab is operated by Google, and it is
free to use.

https://allendowney.github.io/ThinkPython

If you are just getting started, I strongly recommend you start with Colab.

Resources for Teachers
If you are teaching with this book, here are some resources you might find useful.

You can find notebooks with solutions to the exercises at
https://allendowney.github.io/ThinkPython, along with links to the additional resources
below.

Quizzes for each chapter, and a summative quiz for the whole book, are available on
request.

Teaching and Learning with Jupyter is an online book with suggestions for using Jupyter
effectively in the classroom. You can read the book at https://jupyter4edu.github.io/jupyter-
edu-book

One of the best ways to use notebooks is live coding, where an instructor writes code and
students follow along in their own notebooks. To learn about live coding – and get other
great advice about teaching programming – I recommend the instructor training provided
by The Carpentries, at https://carpentries.github.io/instructor-training

Acknowledgments
Many thanks to Jeff Elkner, who translated my Java book into Python, which got this project
started and introduced me to what has turned out to be my favorite language. Thanks also to
Chris Meyers, who contributed several sections to How to Think Like a Computer Scientist.

Thanks to the Free Software Foundation for developing the GNU Free Documentation License,
which helped make my collaboration with Jeff and Chris possible, and thanks to the Creative
Commons for the license I am using now.

Thanks to the developers and maintainers of the Python language and the libraries I used,
including the Turtle graphics module; the tools I used to develop the book, including Jupyter
and JupyterBook; and the services I used, including ChatGPT, Copilot, Colab and GitHub.

Thanks to the editors at Lulu who worked on How to Think Like a Computer Scientist and the
editors at O’Reilly Media who worked on Think Python.

https://allendowney.github.io/ThinkPython
https://jupyter4edu.github.io/jupyter-edu-book
https://jupyter4edu.github.io/jupyter-edu-book
https://carpentries.github.io/instructor-training

Special thanks to the technical reviewers for the second edition, Melissa Lewis and Luciano
Ramalho, and for the third edition, Sam Lau and Luciano Ramalho (again!). I am also grateful to
Luciano for developing the turtle graphics module I use in several chapters, called jupyturtle .

Thanks to all the students who worked with earlier versions of this book and all the contributors
who sent in corrections and suggestions. More than 100 sharp-eyed and thoughtful readers
have sent in suggestions and corrections over the past few years. Their contributions, and
enthusiasm for this project, have been a huge help.

If you have a suggestion or correction, please send email to feedback@thinkpython.com . If you
include at least part of the sentence the error appears in, that makes it easy for me to search.
Page and section numbers are fine, too, but not quite as easy to work with. Thanks!

Think Python: 3rd Edition

Copyright 2024 Allen B. Downey

Code license: MIT License

Text license: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

https://allendowney.github.io/ThinkPython/index.html
https://allendowney.com/
https://mit-license.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Programming as a way of
thinking

Contents
1.1. Arithmetic operators

1.2. Expressions

1.3. Arithmetic functions

1.4. Strings

1.5. Values and types

1.6. Formal and natural languages

1.7. Debugging

1.8. Glossary

1.9. Exercises

You can order print and ebook versions of Think Python 3e from Bookshop.org and Amazon.

The first goal of this book is to teach you how to program in Python. But learning to program
means learning a new way to think, so the second goal of this book is to help you think like a
computer scientist. This way of thinking combines some of the best features of mathematics,
engineering, and natural science. Like mathematicians, computer scientists use formal languages
to denote ideas – specifically computations. Like engineers, they design things, assembling
components into systems and evaluating trade-offs among alternatives. Like scientists, they
observe the behavior of complex systems, form hypotheses, and test predictions.

We will start with the most basic elements of programming and work our way up. In this chapter,
we’ll see how Python represents numbers, letters, and words. And you’ll learn to perform
arithmetic operations.

You will also start to learn the vocabulary of programming, including terms like operator,
expression, value, and type. This vocabulary is important – you will need it to understand the rest

Print to PDF

https://bookshop.org/a/98697/9781098155438
https://www.amazon.com/_/dp/1098155432?smid=ATVPDKIKX0DER&_encoding=UTF8&tag=oreilly20-20&_encoding=UTF8&tag=greenteapre01-20&linkCode=ur2&linkId=e2a529f94920295d27ec8a06e757dc7c&camp=1789&creative=9325

of the book, to communicate with other programmers, and to use and understand virtual
assistants.

1.1. Arithmetic operators
An arithmetic operator is a symbol that represents an arithmetic computation. For example, the
plus sign, + , performs addition.

The minus sign, - , is the operator that performs subtraction.

The asterisk, * , performs multiplication.

And the forward slash, / , performs division:

Notice that the result of the division is 42.0 rather than 42 . That’s because there are two types
of numbers in Python:

30 + 12

42

43 - 1

42

6 * 7

42

84 / 2

42.0

integers, which represent numbers with no fractional or decimal part, and

floating-point numbers, which represent integers and numbers with a decimal point.

If you add, subtract, or multiply two integers, the result is an integer. But if you divide two
integers, the result is a floating-point number. Python provides another operator, // , that
performs integer division. The result of integer division is always an integer.

Integer division is also called “floor division” because it always rounds down (toward the “floor”).

Finally, the operator ** performs exponentiation; that is, it raises a number to a power:

In some other languages, the caret, ^ , is used for exponentiation, but in Python it is a bitwise
operator called XOR. If you are not familiar with bitwise operators, the result might be
unexpected:

I won’t cover bitwise operators in this book, but you can read about them at
http://wiki.python.org/moin/BitwiseOperators.

84 // 2

42

85 // 2

42

7 ** 2

49

7 ^ 2

5

http://wiki.python.org/moin/BitwiseOperators

1.2. Expressions
A collection of operators and numbers is called an expression. An expression can contain any
number of operators and numbers. For example, here’s an expression that contains two
operators.

Notice that exponentiation happens before addition. Python follows the order of operations you
might have learned in a math class: exponentiation happens before multiplication and division,
which happen before addition and subtraction.

In the following example, multiplication happens before addition.

If you want the addition to happen first, you can use parentheses.

Every expression has a value. For example, the expression 6 * 7 has the value 42 .

1.3. Arithmetic functions
In addition to the arithmetic operators, Python provides a few functions that work with
numbers. For example, the round function takes a floating-point number and rounds it off to
the nearest integer.

6 + 6 ** 2

42

12 + 5 * 6

42

(12 + 5) * 6

102

The abs function computes the absolute value of a number. For a positive number, the absolute
value is the number itself.

For a negative number, the absolute value is positive.

When we use a function like this, we say we’re calling the function. An expression that calls a
function is a function call.

When you call a function, the parentheses are required. If you leave them out, you get an error
message.

round(42.4)

42

round(42.6)

43

abs(42)

42

abs(-42)

42

abs 42

 Cell In[17], line 1
 abs 42
 ^
SyntaxError: invalid syntax

You can ignore the first line of this message; it doesn’t contain any information we need to
understand right now. The second line is the code that contains the error, with a caret (^)
beneath it to indicate where the error was discovered.

The last line indicates that this is a syntax error, which means that there is something wrong
with the structure of the expression. In this example, the problem is that a function call requires
parentheses.

Let’s see what happens if you leave out the parentheses and the value.

A function name all by itself is a legal expression that has a value. When it’s displayed, the value
indicates that abs is a function, and it includes some additional information I’ll explain later.

1.4. Strings
In addition to numbers, Python can also represent sequences of letters, which are called strings
because the letters are strung together like beads on a necklace. To write a string, we can put a
sequence of letters inside straight quotation marks.

It is also legal to use double quotation marks.

abs

<function abs(x, /)>

'Hello'

'Hello'

"world"

'world'

Double quotes make it easy to write a string that contains an apostrophe, which is the same
symbol as a straight quote.

Strings can also contain spaces, punctuation, and digits.

The + operator works with strings; it joins two strings into a single string, which is called
concatenation

The * operator also works with strings; it makes multiple copies of a string and concatenates
them.

The other arithmetic operators don’t work with strings.

Python provides a function called len that computes the length of a string.

"it's a small "

"it's a small "

'Well, '

'Well, '

'Well, ' + "it's a small " + 'world.'

"Well, it's a small world."

'Spam, ' * 4

'Spam, Spam, Spam, Spam, '

len('Spam')

Notice that len counts the letters between the quotes, but not the quotes.

When you create a string, be sure to use straight quotes. The back quote, also known as a
backtick, causes a syntax error.

Smart quotes, also known as curly quotes, are also illegal.

1.5. Values and types
So far we’ve seen three kinds of values:

2 is an integer,

42.0 is a floating-point number, and

'Hello' is a string.

A kind of value is called a type. Every value has a type – or we sometimes say it “belongs to” a
type.

Python provides a function called type that tells you the type of any value. The type of an
integer is int .

The type of a floating-point number is float .

4

`Hello`

 Cell In[26], line 1
 `Hello`
 ^
SyntaxError: invalid syntax

type(2)

int

And the type of a string is str .

The types int , float , and str can be used as functions. For example, int can take a
floating-point number and convert it to an integer (always rounding down).

And float can convert an integer to a floating-point value.

Now, here’s something that can be confusing. What do you get if you put a sequence of digits in
quotes?

It looks like a number, but it is actually a string.

type(42.0)

float

type('Hello, World!')

str

int(42.9)

42

float(42)

42.0

'126'

'126'

If you try to use it like a number, you might get an error.

This example generates a TypeError , which means that the values in the expression, which are
called operands, have the wrong type. The error message indicates that the / operator does
not support the types of these values, which are str and int .

If you have a string that contains digits, you can use int to convert it to an integer.

If you have a string that contains digits and a decimal point, you can use float to convert it to
a floating-point number.

When you write a large integer, you might be tempted to use commas between groups of digits,
as in 1,000,000 . This is a legal expression in Python, but the result is not an integer.

type('126')

str

'126' / 3

TypeError: unsupported operand type(s) for /: 'str' and 'int'

int('126') / 3

42.0

float('12.6')

12.6

1,000,000

(1, 0, 0)

Python interprets 1,000,000 as a comma-separated sequence of integers. We’ll learn more
about this kind of sequence later.

You can use underscores to make large numbers easier to read.

1.6. Formal and natural languages
Natural languages are the languages people speak, like English, Spanish, and French. They were
not designed by people; they evolved naturally.

Formal languages are languages that are designed by people for specific applications. For
example, the notation that mathematicians use is a formal language that is particularly good at
denoting relationships among numbers and symbols. Similarly, programming languages are
formal languages that have been designed to express computations.

Although formal and natural languages have some features in common there are important
differences:

Ambiguity: Natural languages are full of ambiguity, which people deal with by using
contextual clues and other information. Formal languages are designed to be nearly or
completely unambiguous, which means that any program has exactly one meaning,
regardless of context.

Redundancy: In order to make up for ambiguity and reduce misunderstandings, natural
languages use redundancy. As a result, they are often verbose. Formal languages are less
redundant and more concise.

Literalness: Natural languages are full of idiom and metaphor. Formal languages mean
exactly what they say.

Because we all grow up speaking natural languages, it is sometimes hard to adjust to formal
languages. Formal languages are more dense than natural languages, so it takes longer to read
them. Also, the structure is important, so it is not always best to read from top to bottom, left to

1_000_000

1000000

right. Finally, the details matter. Small errors in spelling and punctuation, which you can get
away with in natural languages, can make a big difference in a formal language.

1.7. Debugging
Programmers make mistakes. For whimsical reasons, programming errors are called bugs and
the process of tracking them down is called debugging.

Programming, and especially debugging, sometimes brings out strong emotions. If you are
struggling with a difficult bug, you might feel angry, sad, or embarrassed.

Preparing for these reactions might help you deal with them. One approach is to think of the
computer as an employee with certain strengths, like speed and precision, and particular
weaknesses, like lack of empathy and inability to grasp the big picture.

Your job is to be a good manager: find ways to take advantage of the strengths and mitigate the
weaknesses. And find ways to use your emotions to engage with the problem, without letting
your reactions interfere with your ability to work effectively.

Learning to debug can be frustrating, but it is a valuable skill that is useful for many activities
beyond programming. At the end of each chapter there is a section, like this one, with my
suggestions for debugging. I hope they help!

1.8. Glossary
arithmetic operator: A symbol, like + and * , that denotes an arithmetic operation like
addition or multiplication.

integer: A type that represents numbers with no fractional or decimal part.

floating-point: A type that represents integers and numbers with decimal parts.

integer division: An operator, // , that divides two numbers and rounds down to an integer.

expression: A combination of variables, values, and operators.

value: An integer, floating-point number, or string – or one of other kinds of values we will see
later.

function: A named sequence of statements that performs some useful operation. Functions may
or may not take arguments and may or may not produce a result.

function call: An expression – or part of an expression – that runs a function. It consists of the
function name followed by an argument list in parentheses.

syntax error: An error in a program that makes it impossible to parse – and therefore
impossible to run.

string: A type that represents sequences of characters.

concatenation: Joining two strings end-to-end.

type: A category of values. The types we have seen so far are integers (type int), floating-point
numbers (type float), and strings (type str).

operand: One of the values on which an operator operates.

natural language: Any of the languages that people speak that evolved naturally.

formal language: Any of the languages that people have designed for specific purposes, such
as representing mathematical ideas or computer programs. All programming languages are
formal languages.

bug: An error in a program.

debugging: The process of finding and correcting errors.

1.9. Exercises
This cell tells Jupyter to provide detailed debugging information
when a runtime error occurs. Run it before working on the exercises.

%xmode Verbose

Exception reporting mode: Verbose

1.9.1. Ask a virtual assistant
As you work through this book, there are several ways you can use a virtual assistant or chatbot
to help you learn.

If you want to learn more about a topic in the chapter, or anything is unclear, you can ask
for an explanation.

If you are having a hard time with any of the exercises, you can ask for help.

In each chapter, I’ll suggest exercises you can do with a virtual assistant, but I encourage you to
try things on your own and see what works for you.

Here are some topics you could ask a virtual assistant about:

Earlier I mentioned bitwise operators but I didn’t explain why the value of 7 ^ 2 is 5. Try
asking “What are the bitwise operators in Python?” or “What is the value of 7 XOR 2 ?”

I also mentioned the order of operations. For more details, ask “What is the order of
operations in Python?”

The round function, which we used to round a floating-point number to the nearest
integer, can take a second argument. Try asking “What are the arguments of the round
function?” or “How do I round pi off to three decimal places?”

There’s one more arithmetic operator I didn’t mention; try asking “What is the modulus
operator in Python?”

Most virtual assistants know about Python, so they answer questions like this pretty reliably. But
remember that these tools make mistakes. If you get code from a chatbot, test it!

1.9.2. Exercise
You might wonder what round does if a number ends in 0.5 . The answer is that it sometimes
rounds up and sometimes rounds down. Try these examples and see if you can figure out what
rule it follows.

round(42.5)

42

If you are curious, ask a virtual assistant, “If a number ends in 0.5, does Python round up or
down?”

1.9.3. Exercise
When you learn about a new feature, you should try it out and make mistakes on purpose. That
way, you learn the error messages, and when you see them again, you will know what they
mean. It is better to make mistakes now and deliberately than later and accidentally.

1. You can use a minus sign to make a negative number like -2 . What happens if you put a
plus sign before a number? What about 2++2 ?

2. What happens if you have two values with no operator between them, like 4 2 ?

3. If you call a function like round(42.5) , what happens if you leave out one or both
parentheses?

1.9.4. Exercise
Recall that every expression has a value, every value has a type, and we can use the type
function to find the type of any value.

What is the type of the value of the following expressions? Make your best guess for each one,
and then use type to find out.

765

2.718

'2 pi'

abs(-7)

abs(-7.0)

abs

int

round(43.5)

44

type

1.9.5. Exercise
The following questions give you a chance to practice writing arithmetic expressions.

1. How many seconds are there in 42 minutes 42 seconds?

2. How many miles are there in 10 kilometers? Hint: there are 1.61 kilometers in a mile.

3. If you run a 10 kilometer race in 42 minutes 42 seconds, what is your average pace in
seconds per mile?

4. What is your average pace in minutes and seconds per mile?

5. What is your average speed in miles per hour?

If you already know about variables, you can use them for this exercise. If you don’t, you can do
the exercise without them – and then we’ll see them in the next chapter.

Think Python: 3rd Edition

Copyright 2024 Allen B. Downey

Code license: MIT License

Text license: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

https://allendowney.github.io/ThinkPython/index.html
https://allendowney.com/
https://mit-license.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Variables and Statements
Contents

2.1. Variables

2.2. State diagrams

2.3. Variable names

2.4. The import statement

2.5. Expressions and statements

2.6. The print function

2.7. Arguments

2.8. Comments

2.9. Debugging

2.10. Glossary

2.11. Exercises

You can order print and ebook versions of Think Python 3e from Bookshop.org and Amazon.

In the previous chapter, we used operators to write expressions that perform arithmetic
computations.

In this chapter, you’ll learn about variables and statements, the import statement, and the
print function. And I’ll introduce more of the vocabulary we use to talk about programs,

including “argument” and “module”.

2.1. Variables
A variable is a name that refers to a value. To create a variable, we can write a assignment
statement like this.

n = 17

https://bookshop.org/a/98697/9781098155438
https://www.amazon.com/_/dp/1098155432?smid=ATVPDKIKX0DER&_encoding=UTF8&tag=oreilly20-20&_encoding=UTF8&tag=greenteapre01-20&linkCode=ur2&linkId=e2a529f94920295d27ec8a06e757dc7c&camp=1789&creative=9325

An assignment statement has three parts: the name of the variable on the left, the equals
operator, = , and an expression on the right. In this example, the expression is an integer. In the
following example, the expression is a floating-point number.

And in the following example, the expression is a string.

When you run an assignment statement, there is no output. Python creates the variable and
gives it a value, but the assignment statement has no visible effect. However, after creating a
variable, you can use it as an expression. So we can display the value of message like this:

You can also use a variable as part of an expression with arithmetic operators.

And you can use a variable when you call a function.

pi = 3.141592653589793

message = 'And now for something completely different'

message

'And now for something completely different'

n + 25

42

2 * pi

6.283185307179586

round(pi)

2.2. State diagrams
A common way to represent variables on paper is to write the name with an arrow pointing to
its value.

This kind of figure is called a state diagram because it shows what state each of the variables is
in (think of it as the variable’s state of mind). We’ll use state diagrams throughout the book to
represent a model of how Python stores variables and their values.

2.3. Variable names
Variable names can be as long as you like. They can contain both letters and numbers, but they
can’t begin with a number. It is legal to use uppercase letters, but it is conventional to use only
lower case for variable names.

The only punctuation that can appear in a variable name is the underscore character, _ . It is
often used in names with multiple words, such as your_name or airspeed_of_unladen_swallow .

If you give a variable an illegal name, you get a syntax error. The name million! is illegal
because it contains punctuation.

3

len(message)

42

million! = 1000000

76trombones is illegal because it starts with a number.

class is also illegal, but it might not be obvious why.

It turns out that class is a keyword, which is a special word used to specify the structure of a
program. Keywords can’t be used as variable names.

Here’s a complete list of Python’s keywords:

You don’t have to memorize this list. In most development environments, keywords are
displayed in a different color; if you try to use one as a variable name, you’ll know.

 Cell In[12], line 1
 million! = 1000000
 ^
SyntaxError: invalid syntax

76trombones = 'big parade'

 Cell In[13], line 1
 76trombones = 'big parade'
 ^
SyntaxError: invalid decimal literal

class = 'Self-Defence Against Fresh Fruit'

 Cell In[14], line 1
 class = 'Self-Defence Against Fresh Fruit'
 ^
SyntaxError: invalid syntax

False await else import pass
None break except in raise
True class finally is return
and continue for lambda try
as def from nonlocal while
assert del global not with
async elif if or yield

2.4. The import statement
In order to use some Python features, you have to import them. For example, the following
statement imports the math module.

A module is a collection of variables and functions. The math module provides a variable called
pi that contains the value of the mathematical constant denoted . We can display its value

like this.

To use a variable in a module, you have to use the dot operator (.) between the name of the
module and the name of the variable.

The math module also contains functions. For example, sqrt computes square roots.

And pow raises one number to the power of a second number.

At this point we’ve seen two ways to raise a number to a power: we can use the math.pow
function or the exponentiation operator, ** . Either one is fine, but the operator is used more
often than the function.

import math

π

math.pi

3.141592653589793

math.sqrt(25)

5.0

math.pow(5, 2)

25.0

2.5. Expressions and statements
So far, we’ve seen a few kinds of expressions. An expression can be a single value, like an
integer, floating-point number, or string. It can also be a collection of values and operators. And
it can include variable names and function calls. Here’s an expression that includes several of
these elements.

We have also seen a few kind of statements. A statement is a unit of code that has an effect,
but no value. For example, an assignment statement creates a variable and gives it a value, but
the statement itself has no value.

Similarly, an import statement has an effect – it imports a module so we can use the variables
and functions it contains – but it has no visible effect.

Computing the value of an expression is called evaluation. Running a statement is called
execution.

2.6. The print function
When you evaluate an expression, the result is displayed.

But if you evaluate more than one expression, only the value of the last one is displayed.

19 + n + round(math.pi) * 2

42

n = 17

import math

n + 1

18

To display more than one value, you can use the print function.

It also works with floating-point numbers and strings.

You can also use a sequence of expressions separated by commas.

Notice that the print function puts a space between the values.

2.7. Arguments
When you call a function, the expression in parenthesis is called an argument. Normally I would
explain why, but in this case the technical meaning of a term has almost nothing to do with the
common meaning of the word, so I won’t even try.

n + 2
n + 3

20

print(n+2)
print(n+3)

19
20

print('The value of pi is approximately')
print(math.pi)

The value of pi is approximately
3.141592653589793

print('The value of pi is approximately', math.pi)

The value of pi is approximately 3.141592653589793

Some of the functions we’ve seen so far take only one argument, like int .

Some take two, like math.pow .

Some can take additional arguments that are optional. For example, int can take a second
argument that specifies the base of the number.

The sequence of digits 101 in base 2 represents the number 5 in base 10.

round also takes an optional second argument, which is the number of decimal places to
round off to.

Some functions can take any number of arguments, like print .

int('101')

101

math.pow(5, 2)

25.0

int('101', 2)

5

round(math.pi, 3)

3.142

print('Any', 'number', 'of', 'arguments')

Any number of arguments

If you call a function and provide too many arguments, that’s a TypeError .

If you provide too few arguments, that’s also a TypeError .

And if you provide an argument with a type the function can’t handle, that’s a TypeError , too.

This kind of checking can be annoying when you are getting started, but it helps you detect and
correct errors.

2.8. Comments
As programs get bigger and more complicated, they get more difficult to read. Formal
languages are dense, and it is often difficult to look at a piece of code and figure out what it is
doing and why.

For this reason, it is a good idea to add notes to your programs to explain in natural language
what the program is doing. These notes are called comments, and they start with the #
symbol.

float('123.0', 2)

TypeError: float expected at most 1 argument, got 2

math.pow(2)

TypeError: pow expected 2 arguments, got 1

math.sqrt('123')

TypeError: must be real number, not str

number of seconds in 42:42
seconds = 42 * 60 + 42

In this case, the comment appears on a line by itself. You can also put comments at the end of a
line:

Everything from the # to the end of the line is ignored—it has no effect on the execution of
the program.

Comments are most useful when they document non-obvious features of the code. It is
reasonable to assume that the reader can figure out what the code does; it is more useful to
explain why.

This comment is redundant with the code and useless:

This comment contains useful information that is not in the code:

Good variable names can reduce the need for comments, but long names can make complex
expressions hard to read, so there is a tradeoff.

2.9. Debugging
Three kinds of errors can occur in a program: syntax errors, runtime errors, and semantic errors.
It is useful to distinguish between them in order to track them down more quickly.

Syntax error: “Syntax” refers to the structure of a program and the rules about that
structure. If there is a syntax error anywhere in your program, Python does not run the
program. It displays an error message immediately.

Runtime error: If there are no syntax errors in your program, it can start running. But if
something goes wrong, Python displays an error message and stops. This type of error is
called a runtime error. It is also called an exception because it indicates that something
exceptional has happened.

miles = 10 / 1.61 # 10 kilometers in miles

v = 8 # assign 8 to v

v = 8 # velocity in miles per hour

Semantic error: The third type of error is “semantic”, which means related to meaning. If
there is a semantic error in your program, it runs without generating error messages, but it
does not do what you intended. Identifying semantic errors can be tricky because it
requires you to work backward by looking at the output of the program and trying to
figure out what it is doing.

As we’ve seen, an illegal variable name is a syntax error.

If you use an operator with a type it doesn’t support, that’s a runtime error.

Finally, here’s an example of a semantic error. Suppose we want to compute the average of 1
and 3 , but we forget about the order of operations and write this:

When this expression is evaluated, it does not produce an error message, so there is no syntax
error or runtime error. But the result is not the average of 1 and 3 , so the program is not
correct. This is a semantic error because the program runs but it doesn’t do what’s intended.

2.10. Glossary
variable: A name that refers to a value.

million! = 1000000

 Cell In[40], line 1
 million! = 1000000
 ^
SyntaxError: invalid syntax

'126' / 3

TypeError: unsupported operand type(s) for /: 'str' and 'int'

1 + 3 / 2

2.5

assignment statement: A statement that assigns a value to a variable.

state diagram: A graphical representation of a set of variables and the values they refer to.

keyword: A special word used to specify the structure of a program.

import statement: A statement that reads a module file so we can use the variables and
functions it contains.

module: A file that contains Python code, including function definitions and sometimes other
statements.

dot operator: The operator, . , used to access a function in another module by specifying the
module name followed by a dot and the function name.

evaluate: Perform the operations in an expression in order to compute a value.

statement: One or more lines of code that represent a command or action.

execute: Run a statement and do what it says.

argument: A value provided to a function when the function is called.

comment: Text included in a program that provides information about the program but has no
effect on its execution.

runtime error: An error that causes a program to display an error message and exit.

exception: An error that is detected while the program is running.

semantic error: An error that causes a program to do the wrong thing, but not to display an
error message.

2.11. Exercises
This cell tells Jupyter to provide detailed debugging information
when a runtime error occurs. Run it before working on the exercises.

%xmode Verbose

2.11.1. Ask a virtual assistant
Again, I encourage you to use a virtual assistant to learn more about any of the topics in this
chapter.

If you are curious about any of keywords I listed, you could ask “Why is class a keyword?” or
“Why can’t variable names be keywords?”

You might have noticed that int , float , and str are not Python keywords. They are
variables that represent types, and they can be used as functions. So it is legal to have a variable
or function with one of those names, but it is strongly discouraged. Ask an assistant “Why is it
bad to use int, float, and str as variable names?”

Also ask, “What are the built-in functions in Python?” If you are curious about any of them, ask
for more information.

In this chapter we imported the math module and used some of the variable and functions it
provides. Ask an assistant, “What variables and functions are in the math module?” and “Other
than math, what modules are considered core Python?”

2.11.2. Exercise
Repeating my advice from the previous chapter, whenever you learn a new feature, you should
make errors on purpose to see what goes wrong.

We’ve seen that n = 17 is legal. What about 17 = n ?

How about x = y = 1 ?

In some languages every statement ends with a semi-colon (;). What happens if you put a
semi-colon at the end of a Python statement?

What if you put a period at the end of a statement?

What happens if you spell the name of a module wrong and try to import maath ?

Exception reporting mode: Verbose

2.11.3. Exercise
Practice using the Python interpreter as a calculator:

Part 1. The volume of a sphere with radius is . What is the volume of a sphere with
radius 5? Start with a variable named radius and then assign the result to a variable named
volume . Display the result. Add comments to indicate that radius is in centimeters and
volume in cubic centimeters.

Part 2. A rule of trigonometry says that for any value of , . Let’s see if
it’s true for a specific value of like 42.

Create a variable named x with this value. Then use math.cos and math.sin to compute the
sine and cosine of , and the sum of their squared.

The result should be close to 1. It might not be exactly 1 because floating-point arithmetic is
not exact—it is only approximately correct.

Part 3. In addition to pi , the other variable defined in the math module is e , which
represents the base of the natural logarithm, written in math notation as . If you are not
familiar with this value, ask a virtual assistant “What is math.e ?” Now let’s compute three
ways:

Use math.e and the exponentiation operator (**).

Use math.pow to raise math.e to the power 2 .

Use math.exp , which takes as an argument a value, , and computes .

You might notice that the last result is slightly different from the other two. See if you can find
out which is correct.

Think Python: 3rd Edition

Copyright 2024 Allen B. Downey

Code license: MIT License

Text license: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

r
4
3 πr

3

x (cos x)2 + (sin x)2 = 1

x

x

e

e
2

x e
x

https://allendowney.github.io/ThinkPython/index.html
https://allendowney.com/
https://mit-license.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Functions
Contents

3.1. Defining new functions

3.2. Parameters

3.3. Calling functions

3.4. Repetition

3.5. Variables and parameters are local

3.6. Stack diagrams

3.7. Tracebacks

3.8. Why functions?

3.9. Debugging

3.10. Glossary

3.11. Exercises

You can order print and ebook versions of Think Python 3e from Bookshop.org and Amazon.

In the previous chapter we used several functions provided by Python, like int and float ,
and a few provided by the math module, like sqrt and pow . In this chapter, you will learn
how to create your own functions and run them. And we’ll see how one function can call
another. As examples, we’ll display lyrics from Monty Python songs. These silly examples
demonstrate an important feature – the ability to write your own functions is the foundation of
programming.

This chapter also introduces a new statement, the for loop, which is used to repeat a
computation.

https://bookshop.org/a/98697/9781098155438
https://www.amazon.com/_/dp/1098155432?smid=ATVPDKIKX0DER&_encoding=UTF8&tag=oreilly20-20&_encoding=UTF8&tag=greenteapre01-20&linkCode=ur2&linkId=e2a529f94920295d27ec8a06e757dc7c&camp=1789&creative=9325

3.1. Defining new functions
A function definition specifies the name of a new function and the sequence of statements
that run when the function is called. Here’s an example:

def is a keyword that indicates that this is a function definition. The name of the function is
print_lyrics . Anything that’s a legal variable name is also a legal function name.

The empty parentheses after the name indicate that this function doesn’t take any arguments.

The first line of the function definition is called the header – the rest is called the body. The
header has to end with a colon and the body has to be indented. By convention, indentation is
always four spaces. The body of this function is two print statements; in general, the body of a
function can contain any number of statements of any kind.

Defining a function creates a function object, which we can display like this.

The output indicates that print_lyrics is a function that takes no arguments. __main__ is the
name of the module that contains print_lyrics .

Now that we’ve defined a function, we can call it the same way we call built-in functions.

When the function runs, it executes the statements in the body, which display the first two lines
of “The Lumberjack Song”.

def print_lyrics():
 print("I'm a lumberjack, and I'm okay.")
 print("I sleep all night and I work all day.")

print_lyrics

<function __main__.print_lyrics()>

print_lyrics()

I'm a lumberjack, and I'm okay.
I sleep all night and I work all day.

3.2. Parameters
Some of the functions we have seen require arguments; for example, when you call abs you
pass a number as an argument. Some functions take more than one argument; for example,
math.pow takes two, the base and the exponent.

Here is a definition for a function that takes an argument.

The variable name in parentheses is a parameter. When the function is called, the value of the
argument is assigned to the parameter. For example, we can call print_twice like this.

Running this function has the same effect as assigning the argument to the parameter and then
executing the body of the function, like this.

You can also use a variable as an argument.

def print_twice(string):
 print(string)
 print(string)

print_twice('Dennis Moore, ')

Dennis Moore,
Dennis Moore,

string = 'Dennis Moore, '
print(string)
print(string)

Dennis Moore,
Dennis Moore,

line = 'Dennis Moore, '
print_twice(line)

Dennis Moore,
Dennis Moore,

In this example, the value of line gets assigned to the parameter string .

3.3. Calling functions
Once you have defined a function, you can use it inside another function. To demonstrate, we’ll
write functions that print the lyrics of “The Spam Song”
(https://www.songfacts.com/lyrics/monty-python/the-spam-song).

We’ll start with the following function, which takes two parameters.

We can use this function to print the first line of the song, like this.

To display the first two lines, we can define a new function that uses repeat .

And then call it like this.

Spam, Spam, Spam, Spam,
Spam, Spam, Spam, Spam,
Spam, Spam,
(Lovely Spam, Wonderful Spam!)
Spam, Spam,

def repeat(word, n):
 print(word * n)

spam = 'Spam, '
repeat(spam, 4)

Spam, Spam, Spam, Spam,

def first_two_lines():
 repeat(spam, 4)
 repeat(spam, 4)

first_two_lines()

https://www.songfacts.com/lyrics/monty-python/the-spam-song

To display the last three lines, we can define another function, which also uses repeat .

Finally, we can bring it all together with one function that prints the whole verse.

When we run print_verse , it calls first_two_lines , which calls repeat , which calls print .
That’s a lot of functions.

Of course, we could have done the same thing with fewer functions, but the point of this
example is to show how functions can work together.

Spam, Spam, Spam, Spam,
Spam, Spam, Spam, Spam,

def last_three_lines():
 repeat(spam, 2)
 print('(Lovely Spam, Wonderful Spam!)')
 repeat(spam, 2)

last_three_lines()

Spam, Spam,
(Lovely Spam, Wonderful Spam!)
Spam, Spam,

def print_verse():
 first_two_lines()
 last_three_lines()

print_verse()

Spam, Spam, Spam, Spam,
Spam, Spam, Spam, Spam,
Spam, Spam,
(Lovely Spam, Wonderful Spam!)
Spam, Spam,

3.4. Repetition
If we want to display more than one verse, we can use a for statement. Here’s a simple
example.

The first line is a header that ends with a colon. The second line is the body, which has to be
indented.

The header starts with the keyword for , a new variable named i , and another keyword, in .
It uses the range function to create a sequence of two values, which are 0 and 1 . In Python,
when we start counting, we usually start from 0 .

When the for statement runs, it assigns the first value from range to i and then runs the
print function in the body, which displays 0 .

When it gets to the end of the body, it loops back around to the header, which is why this
statement is called a loop. The second time through the loop, it assigns the next value from
range to i , and displays it. Then, because that’s the last value from range , the loop ends.

Here’s how we can use a for loop to print two verses of the song.

for i in range(2):
 print(i)

0
1

for i in range(2):
 print("Verse", i)
 print_verse()
 print()

You can put a for loop inside a function. For example, print_n_verses takes a parameter
named n , which has to be an integer, and displays the given number of verses.

In this example, we don’t use i in the body of the loop, but there has to be a variable name in
the header anyway.

3.5. Variables and parameters are local
When you create a variable inside a function, it is local, which means that it only exists inside
the function. For example, the following function takes two arguments, concatenates them, and
prints the result twice.

Here’s an example that uses it:

Verse 0
Spam, Spam, Spam, Spam,
Spam, Spam, Spam, Spam,
Spam, Spam,
(Lovely Spam, Wonderful Spam!)
Spam, Spam,

Verse 1
Spam, Spam, Spam, Spam,
Spam, Spam, Spam, Spam,
Spam, Spam,
(Lovely Spam, Wonderful Spam!)
Spam, Spam,

def print_n_verses(n):
 for i in range(n):
 print_verse()
 print()

def cat_twice(part1, part2):
 cat = part1 + part2
 print_twice(cat)

line1 = 'Always look on the '
line2 = 'bright side of life.'
cat_twice(line1, line2)

When cat_twice runs, it creates a local variable named cat , which is destroyed when the
function ends. If we try to display it, we get a NameError :

Outside of the function, cat is not defined.

Parameters are also local. For example, outside cat_twice , there is no such thing as part1 or
part2 .

3.6. Stack diagrams
To keep track of which variables can be used where, it is sometimes useful to draw a stack
diagram. Like state diagrams, stack diagrams show the value of each variable, but they also
show the function each variable belongs to.

Each function is represented by a frame. A frame is a box with the name of a function on the
outside and the parameters and local variables of the function on the inside.

Here’s the stack diagram for the previous example.

Always look on the bright side of life.
Always look on the bright side of life.

print(cat)

NameError: name 'cat' is not defined

The frames are arranged in a stack that indicates which function called which, and so on.
Reading from the bottom, print was called by print_twice , which was called by cat_twice ,
which was called by __main__ – which is a special name for the topmost frame. When you
create a variable outside of any function, it belongs to __main__ .

In the frame for print , the question mark indicates that we don’t know the name of the
parameter. If you are curious, ask a virtual assistant, “What are the parameters of the Python
print function?”

3.7. Tracebacks
When a runtime error occurs in a function, Python displays the name of the function that was
running, the name of the function that called it, and so on, up the stack. To see an example, I’ll
define a version of print_twice that contains an error – it tries to print cat , which is a local
variable in another function.

Now here’s what happens when we run cat_twice .

def print_twice(string):
 print(cat) # NameError
 print(cat)

The error message includes a traceback, which shows the function that was running when the
error occurred, the function that called it, and so on. In this example, it shows that cat_twice
called print_twice , and the error occurred in a print_twice .

The order of the functions in the traceback is the same as the order of the frames in the stack
diagram. The function that was running is at the bottom.

3.8. Why functions?
It may not be clear yet why it is worth the trouble to divide a program into functions. There are
several reasons:

This cell tells Jupyter to provide detailed debugging information
when a runtime error occurs, including a traceback.

%xmode Verbose

Exception reporting mode: Verbose

cat_twice(line1, line2)

 

NameError Traceback (most recent call last)
Cell In[27], line 1
----> 1 cat_twice(line1, line2)
 line1 = 'Always look on the '
 line2 = 'bright side of life.'

Cell In[20], line 3, in cat_twice(part1='Always look on the ', part2='bright side of l
 1 def cat_twice(part1, part2):
 2 cat = part1 + part2
----> 3 print_twice(cat)
 cat = 'Always look on the bright side of life.'

Cell In[25], line 2, in print_twice(string='Always look on the bright side of life.')
 1 def print_twice(string):
----> 2 print(cat) # NameError
 3 print(cat)

NameError: name 'cat' is not defined

Creating a new function gives you an opportunity to name a group of statements, which
makes your program easier to read and debug.

Functions can make a program smaller by eliminating repetitive code. Later, if you make a
change, you only have to make it in one place.

Dividing a long program into functions allows you to debug the parts one at a time and
then assemble them into a working whole.

Well-designed functions are often useful for many programs. Once you write and debug
one, you can reuse it.

3.9. Debugging
Debugging can be frustrating, but it is also challenging, interesting, and sometimes even fun.
And it is one of the most important skills you can learn.

In some ways debugging is like detective work. You are given clues and you have to infer the
events that led to the results you see.

Debugging is also like experimental science. Once you have an idea about what is going wrong,
you modify your program and try again. If your hypothesis was correct, you can predict the
result of the modification, and you take a step closer to a working program. If your hypothesis
was wrong, you have to come up with a new one.

For some people, programming and debugging are the same thing; that is, programming is the
process of gradually debugging a program until it does what you want. The idea is that you
should start with a working program and make small modifications, debugging them as you go.

If you find yourself spending a lot of time debugging, that is often a sign that you are writing
too much code before you start tests. If you take smaller steps, you might find that you can
move faster.

3.10. Glossary
function definition: A statement that creates a function.

header: The first line of a function definition.

body: The sequence of statements inside a function definition.

function object: A value created by a function definition. The name of the function is a variable
that refers to a function object.

parameter: A name used inside a function to refer to the value passed as an argument.

loop: A statement that runs one or more statements, often repeatedly.

local variable: A variable defined inside a function, and which can only be accessed inside the
function.

stack diagram: A graphical representation of a stack of functions, their variables, and the values
they refer to.

frame: A box in a stack diagram that represents a function call. It contains the local variables
and parameters of the function.

traceback: A list of the functions that are executing, printed when an exception occurs.

3.11. Exercises

3.11.1. Ask a virtual assistant
The statements in a function or a for loop are indented by four spaces, by convention. But not
everyone agrees with that convention. If you are curious about the history of this great debate,
ask a virtual assistant to “tell me about spaces and tabs in Python”.

Virtual assistant are pretty good at writing small functions.

1. Ask your favorite VA to “Write a function called repeat that takes a string and an integer
and prints the string the given number of times.”

This cell tells Jupyter to provide detailed debugging information
when a runtime error occurs. Run it before working on the exercises.

%xmode Verbose

Exception reporting mode: Verbose

2. If the result uses a for loop, you could ask, “Can you do it without a for loop?”

3. Pick any other function in this chapter and ask a VA to write it. The challenge is to describe
the function precisely enough to get what you want. Use the vocabulary you have learned
so far in this book.

Virtual assistants are also pretty good at debugging functions.

1. Ask a VA what’s wrong with this version of print_twice .

And if you get stuck on any of the exercises below, consider asking a VA for help.

3.11.2. Exercise
Write a function named print_right that takes a string named text as a parameter and
prints the string with enough leading spaces that the last letter of the string is in the 40th
column of the display.

Hint: Use the len function, the string concatenation operator (+) and the string repetition
operator (*).

Here’s an example that shows how it should work.

def print_twice(string):
 print(cat)
 print(cat)

print_right("Monty")
print_right("Python's")
print_right("Flying Circus")

 Monty
 Python's
 Flying Circus

3.11.3. Exercise
Write a function called triangle that takes a string and an integer and draws a pyramid with
the given height, made up using copies of the string. Here’s an example of a pyramid with 5
levels, using the string 'L' .

3.11.4. Exercise
Write a function called rectangle that takes a string and two integers and draws a rectangle
with the given width and height, made up using copies of the string. Here’s an example of a
rectangle with width 5 and height 4 , made up of the string 'H' .

3.11.5. Exercise
The song “99 Bottles of Beer” starts with this verse:

triangle('L', 5)

L
LL
LLL
LLLL
LLLLL

rectangle('H', 5, 4)

HHHHH
HHHHH
HHHHH
HHHHH

99 bottles of beer on the wall
99 bottles of beer
Take one down, pass it around
98 bottles of beer on the wall

Then the second verse is the same, except that it starts with 98 bottles and ends with 97. The
song continues – for a very long time – until there are 0 bottles of beer.

Write a function called bottle_verse that takes a number as a parameter and displays the
verse that starts with the given number of bottles.

Hint: Consider starting with a function that can print the first, second, or last line of the verse,
and then use it to write bottle_verse .

Use this function call to display the first verse.

If you want to print the whole song, you can use this for loop, which counts down from 99 to
1 . You don’t have to completely understand this example—we’ll learn more about for loops

and the range function later.

Think Python: 3rd Edition

Copyright 2024 Allen B. Downey

Code license: MIT License

Text license: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

bottle_verse(99)

99 bottles of beer on the wall
99 bottles of beer
Take one down, pass it around
98 bottles of beer on the wall

for n in range(99, 0, -1):
 bottle_verse(n)
 print()

https://allendowney.github.io/ThinkPython/index.html
https://allendowney.com/
https://mit-license.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Functions and Interfaces
Contents

4.1. The jupyturtle module

4.2. Making a square

4.3. Encapsulation and generalization

4.4. Approximating a circle

4.5. Refactoring

4.6. Stack diagram

4.7. A development plan

4.8. Docstrings

4.9. Debugging

4.10. Glossary

4.11. Exercises

You can order print and ebook versions of Think Python 3e from Bookshop.org and Amazon.

This chapter introduces a module called jupyturtle , which allows you to create simple
drawings by giving instructions to an imaginary turtle. We will use this module to write
functions that draw squares, polygons, and circles – and to demonstrate interface design,
which is a way of designing functions that work together.

4.1. The jupyturtle module
To use the jupyturtle module, we can import it like this.

Now we can use the functions defined in the module, like make_turtle and forward .

import jupyturtle

https://bookshop.org/a/98697/9781098155438
https://www.amazon.com/_/dp/1098155432?smid=ATVPDKIKX0DER&_encoding=UTF8&tag=oreilly20-20&_encoding=UTF8&tag=greenteapre01-20&linkCode=ur2&linkId=e2a529f94920295d27ec8a06e757dc7c&camp=1789&creative=9325

make_turtle creates a canvas, which is a space on the screen where we can draw, and a turtle,
which is represented by a circular shell and a triangular head. The circle shows the location of
the turtle and the triangle indicates the direction it is facing.

forward moves the turtle a given distance in the direction it’s facing, drawing a line segment
along the way. The distance is in arbitrary units – the actual size depends on your computer’s
screen.

We will use functions defined in the jupyturtle module many times, so it would be nice if we
did not have to write the name of the module every time. That’s possible if we import the
module like this.

This version of the import statement imports make_turtle and forward from the jupyturtle
module so we can call them like this.

jupyturtle.make_turtle()
jupyturtle.forward(100)

from jupyturtle import make_turtle, forward

make_turtle()
forward(100)

jupyturtle provides two other functions we’ll use, called left and right . We’ll import them
like this.

left causes the turtle to turn left. It takes one argument, which is the angle of the turn in
degrees. For example, we can make a 90 degree left turn like this.

This program moves the turtle east and then north, leaving two line segments behind. Before
you go on, see if you can modify the previous program to make a square.

4.2. Making a square
Here’s one way to make a square.

from jupyturtle import left, right

make_turtle()
forward(50)
left(90)
forward(50)

make_turtle()

forward(50)
left(90)

forward(50)
left(90)

forward(50)
left(90)

forward(50)
left(90)

Because this program repeats the same pair of lines four times, we can do the same thing more
concisely with a for loop.

4.3. Encapsulation and generalization
Let’s take the square-drawing code from the previous section and put it in a function called
square .

Now we can call the function like this.

make_turtle()
for i in range(4):
 forward(50)
 left(90)

def square():
 for i in range(4):
 forward(50)
 left(90)

make_turtle()
square()

Wrapping a piece of code up in a function is called encapsulation. One of the benefits of
encapsulation is that it attaches a name to the code, which serves as a kind of documentation.
Another advantage is that if you re-use the code, it is more concise to call a function twice than
to copy and paste the body!

In the current version, the size of the square is always 50 . If we want to draw squares with
different sizes, we can take the length of the sides as a parameter.

Now we can draw squares with different sizes.

Adding a parameter to a function is called generalization because it makes the function more
general: with the previous version, the square is always the same size; with this version it can be
any size.

If we add another parameter, we can make it even more general. The following function draws
regular polygons with a given number of sides.

def square(length):
 for i in range(4):
 forward(length)
 left(90)

make_turtle()
square(30)
square(60)

In a regular polygon with n sides, the angle between adjacent sides is 360 / n degrees.

The following example draws a 7 -sided polygon with side length 30 .

When a function has more than a few numeric arguments, it is easy to forget what they are, or
what order they should be in. It can be a good idea to include the names of the parameters in
the argument list.

These are sometimes called “named arguments” because they include the parameter names.
But in Python they are more often called keyword arguments (not to be confused with Python
keywords like for and def).

This use of the assignment operator, = , is a reminder about how arguments and parameters
work – when you call a function, the arguments are assigned to the parameters.

4.4. Approximating a circle
Now suppose we want to draw a circle. We can do that, approximately, by drawing a polygon
with a large number of sides, so each side is small enough that it’s hard to see. Here is a

def polygon(n, length):
 angle = 360 / n
 for i in range(n):
 forward(length)
 left(angle)

make_turtle()
polygon(7, 30)

make_turtle()
polygon(n=7, length=30)

function that uses polygon to draw a 30 -sided polygon that approximates a circle.

circle takes the radius of the the circle as a parameter. It computes circumference , which is
the circumference of a circle with the given radius. n is the number of sides, so circumference
/ n is the length of each side.

This function might take a long time to run. We can speed it up by calling make_turtle with a
keyword argument called delay that sets the time, in seconds, the turtle waits after each step.
The default value is 0.2 seconds – if we set it to 0.02 it runs about 10 times faster.

A limitation of this solution is that n is a constant, which means that for very big circles, the
sides are too long, and for small circles, we waste time drawing very short sides. One option is
to generalize the function by taking n as a parameter. But let’s keep it simple for now.

4.5. Refactoring
Now let’s write a more general version of circle , called arc , that takes a second parameter,
angle , and draws an arc of a circle that spans the given angle. For example, if angle is 360

degrees, it draws a complete circle. If angle is 180 degrees, it draws a half circle.

import math

def circle(radius):
 circumference = 2 * math.pi * radius
 n = 30
 length = circumference / n
 polygon(n, length)

make_turtle(delay=0.02)
circle(30)

To write circle , we were able to reuse polygon , because a many-sided polygon is a good
approximation of a circle. But we can’t use polygon to write arc .

Instead, we’ll create the more general version of polygon , called polyline .

polyline takes as parameters the number of line segments to draw, n , the length of the
segments, length , and the angle between them, angle .

Now we can rewrite polygon to use polyline .

And we can use polyline to write arc .

arc is similar to circle , except that it computes arc_length , which is a fraction of the
circumference of a circle.

Finally, we can rewrite circle to use arc .

To check that these functions work as expected, we’ll use them to draw something like a snail.
With delay=0 , the turtle runs as fast as possible.

def polyline(n, length, angle):
 for i in range(n):
 forward(length)
 left(angle)

def polygon(n, length):
 angle = 360.0 / n
 polyline(n, length, angle)

def arc(radius, angle):
 arc_length = 2 * math.pi * radius * angle / 360
 n = 30
 length = arc_length / n
 step_angle = angle / n
 polyline(n, length, step_angle)

def circle(radius):
 arc(radius, 360)

In this example, we started with working code and reorganized it with different functions.
Changes like this, which improve the code without changing its behavior, are called
refactoring.

If we had planned ahead, we might have written polyline first and avoided refactoring, but
often you don’t know enough at the beginning of a project to design all the functions. Once
you start coding, you understand the problem better. Sometimes refactoring is a sign that you
have learned something.

4.6. Stack diagram
When we call circle , it calls arc , which calls polyline . We can use a stack diagram to show
this sequence of function calls and the parameters for each one.

Notice that the value of angle in polyline is different from the value of angle in arc .
Parameters are local, which means you can use the same parameter name in different functions;
it’s a different variable in each function, and it can refer to a different value.

make_turtle(delay=0)
polygon(n=20, length=9)
arc(radius=70, angle=70)
circle(radius=10)

4.7. A development plan
A development plan is a process for writing programs. The process we used in this chapter is
“encapsulation and generalization”. The steps of this process are:

1. Start by writing a small program with no function definitions.

2. Once you get the program working, identify a coherent piece of it, encapsulate the piece in
a function and give it a name.

3. Generalize the function by adding appropriate parameters.

4. Repeat Steps 1 to 3 until you have a set of working functions.

5. Look for opportunities to improve the program by refactoring. For example, if you have
similar code in several places, consider factoring it into an appropriately general function.

This process has some drawbacks – we will see alternatives later – but it can be useful if you
don’t know ahead of time how to divide the program into functions. This approach lets you
design as you go along.

The design of a function has two parts:

The interface is how the function is used, including its name, the parameters it takes and
what the function is supposed to do.

The implementation is how the function does what it’s supposed to do.

For example, here’s the first version of circle we wrote, which uses polygon .

And here’s the refactored version that uses arc .

These two functions have the same interface – they take the same parameters and do the same
thing – but they have different implementations.

def circle(radius):
 circumference = 2 * math.pi * radius
 n = 30
 length = circumference / n
 polygon(n, length)

def circle(radius):
 arc(radius, 360)

4.8. Docstrings
A docstring is a string at the beginning of a function that explains the interface (“doc” is short
for “documentation”). Here is an example:

By convention, docstrings are triple-quoted strings, also known as multiline strings because
the triple quotes allow the string to span more than one line.

A docstring should:

Explain concisely what the function does, without getting into the details of how it works,

Explain what effect each parameter has on the behavior of the function, and

Indicate what type each parameter should be, if it is not obvious.

Writing this kind of documentation is an important part of interface design. A well-designed
interface should be simple to explain; if you have a hard time explaining one of your functions,
maybe the interface could be improved.

4.9. Debugging
An interface is like a contract between a function and a caller. The caller agrees to provide
certain arguments and the function agrees to do certain work.

For example, polyline requires three arguments: n has to be an integer; length should be a
positive number; and angle has to be a number, which is understood to be in degrees.

These requirements are called preconditions because they are supposed to be true before the
function starts executing. Conversely, conditions at the end of the function are postconditions.

def polyline(n, length, angle):
 """Draws line segments with the given length and angle between them.

 n: integer number of line segments
 length: length of the line segments
 angle: angle between segments (in degrees)
 """
 for i in range(n):
 forward(length)
 left(angle)

Postconditions include the intended effect of the function (like drawing line segments) and any
side effects (like moving the turtle or making other changes).

Preconditions are the responsibility of the caller. If the caller violates a precondition and the
function doesn’t work correctly, the bug is in the caller, not the function.

If the preconditions are satisfied and the postconditions are not, the bug is in the function. If
your pre- and postconditions are clear, they can help with debugging.

4.10. Glossary
interface design: A process for designing the interface of a function, which includes the
parameters it should take.

canvas: A window used to display graphical elements including lines, circles, rectangles, and
other shapes.

encapsulation: The process of transforming a sequence of statements into a function
definition.

generalization: The process of replacing something unnecessarily specific (like a number) with
something appropriately general (like a variable or parameter).

keyword argument: An argument that includes the name of the parameter.

refactoring: The process of modifying a working program to improve function interfaces and
other qualities of the code.

development plan: A process for writing programs.

docstring: A string that appears at the top of a function definition to document the function’s
interface.

multiline string: A string enclosed in triple quotes that can span more than one line of a
program.

precondition: A requirement that should be satisfied by the caller before a function starts.

postcondition: A requirement that should be satisfied by the function before it ends.

4.11. Exercises

For the exercises below, there are a few more turtle functions you might want to use.

penup lifts the turtle’s imaginary pen so it doesn’t leave a trail when it moves.

pendown puts the pen back down.

The following function uses penup and pendown to move the turtle without leaving a trail.

4.11.1. Exercise
Write a function called rectangle that draws a rectangle with given side lengths. For example,
here’s a rectangle that’s 80 units wide and 40 units tall.

This cell tells Jupyter to provide detailed debugging information
when a runtime error occurs. Run it before working on the exercises.

%xmode Verbose

Exception reporting mode: Verbose

from jupyturtle import penup, pendown

def jump(length):
 """Move forward length units without leaving a trail.

 Postcondition: Leaves the pen down.
 """
 penup()
 forward(length)
 pendown()

4.11.2. Exercise
Write a function called rhombus that draws a rhombus with a given side length and a given
interior angle. For example, here’s a rhombus with side length 50 and an interior angle of 60
degrees.

4.11.3. Exercise
Now write a more general function called parallelogram that draws a quadrilateral with
parallel sides. Then rewrite rectangle and rhombus to use parallelogram .

4.11.4. Exercise
Write an appropriately general set of functions that can draw shapes like this.

Hint: Write a function called triangle that draws one triangular segment, and then a function
called draw_pie that uses triangle .

4.11.5. Exercise
Write an appropriately general set of functions that can draw flowers like this.

Hint: Use arc to write a function called petal that draws one flower petal.

4.11.6. Ask a virtual assistant
There are several modules like jupyturtle in Python, and the one we used in this chapter has
been customized for this book. So if you ask a virtual assistant for help, it won’t know which
module to use. But if you give it a few examples to work with, it can probably figure it out. For
example, try this prompt and see if it can write a function that draws a spiral:

Keep in mind that the result might use features we have not seen yet, and it might have errors.
Copy the code from the VA and see if you can get it working. If you didn’t get what you wanted,

The following program uses a turtle graphics module to draw a circle:

from jupyturtle import make_turtle, forward, left
import math

def polygon(n, length):
 angle = 360 / n
 for i in range(n):
 forward(length)
 left(angle)

def circle(radius):
 circumference = 2 * math.pi * radius
 n = 30
 length = circumference / n
 polygon(n, length)

make_turtle(delay=0)
circle(30)

Write a function that draws a spiral.

try modifying the prompt.

Think Python: 3rd Edition

Copyright 2024 Allen B. Downey

Code license: MIT License

Text license: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

https://allendowney.github.io/ThinkPython/index.html
https://allendowney.com/
https://mit-license.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Conditionals and Recursion
Contents

5.1. Integer division and modulus

5.2. Boolean Expressions

5.3. Logical operators

5.4. if statements

5.5. The else clause

5.6. Chained conditionals

5.7. Nested Conditionals

5.8. Recursion

5.9. Stack diagrams for recursive functions

5.10. Infinite recursion

5.11. Keyboard input

5.12. Debugging

5.13. Glossary

5.14. Exercises

You can order print and ebook versions of Think Python 3e from Bookshop.org and Amazon.

The main topic of this chapter is the if statement, which executes different code depending
on the state of the program. And with the if statement we’ll be able to explore one of the
most powerful ideas in computing, recursion.

But we’ll start with three new features: the modulus operator, boolean expressions, and logical
operators.

https://bookshop.org/a/98697/9781098155438
https://www.amazon.com/_/dp/1098155432?smid=ATVPDKIKX0DER&_encoding=UTF8&tag=oreilly20-20&_encoding=UTF8&tag=greenteapre01-20&linkCode=ur2&linkId=e2a529f94920295d27ec8a06e757dc7c&camp=1789&creative=9325

5.1. Integer division and modulus
Recall that the integer division operator, // , divides two numbers and rounds down to an
integer. For example, suppose the run time of a movie is 105 minutes. You might want to know
how long that is in hours. Conventional division returns a floating-point number:

But we don’t normally write hours with decimal points. Integer division returns the integer
number of hours, rounding down:

To get the remainder, you could subtract off one hour in minutes:

Or you could use the modulus operator, % , which divides two numbers and returns the
remainder.

minutes = 105
minutes / 60

1.75

minutes = 105
hours = minutes // 60
hours

1

remainder = minutes - hours * 60
remainder

45

remainder = minutes % 60
remainder

45

The modulus operator is more useful than it might seem. For example, it can check whether one
number is divisible by another – if x % y is zero, then x is divisible by y .

Also, it can extract the right-most digit or digits from a number. For example, x % 10 yields the
right-most digit of x (in base 10). Similarly, x % 100 yields the last two digits.

Finally, the modulus operator can do “clock arithmetic”. For example, if an event starts at 11 AM
and lasts three hours, we can use the modulus operator to figure out what time it ends.

The event would end at 2 PM.

5.2. Boolean Expressions
A boolean expression is an expression that is either true or false. For example, the following
expressions use the equals operator, == , which compares two values and produces True if
they are equal and False otherwise:

x = 123
x % 10

3

x % 100

23

start = 11
duration = 3
end = (start + duration) % 12
end

2

5 == 5

A common error is to use a single equal sign (=) instead of a double equal sign (==).
Remember that = assigns a value to a variable and == compares two values.

True and False are special values that belong to the type bool ; they are not strings:

The == operator is one of the relational operators; the others are:

True

5 == 7

False

x = 5
y = 7

x == y

False

type(True)

bool

type(False)

bool

x != y # x is not equal to y

True

5.3. Logical operators
To combine boolean values into expressions, we can use logical operators. The most common
are and , or , and not . The meaning of these operators is similar to their meaning in English.
For example, the value of the following expression is True only if x is greater than 0 and less
than 10 .

The following expression is True if either or both of the conditions is true, that is, if the number
is divisible by 2 or 3:

x > y # x is greater than y

False

x < y # x is less than to y

True

x >= y # x is greater than or equal to y

False

x <= y # x is less than or equal to y

True

x > 0 and x < 10

True

Finally, the not operator negates a boolean expression, so the following expression is True if
x > y is False .

Strictly speaking, the operands of a logical operator should be boolean expressions, but Python
is not very strict. Any nonzero number is interpreted as True :

This flexibility can be useful, but there are some subtleties to it that can be confusing. You might
want to avoid it.

5.4. if statements
In order to write useful programs, we almost always need the ability to check conditions and
change the behavior of the program accordingly. Conditional statements give us this ability.
The simplest form is the if statement:

x % 2 == 0 or x % 3 == 0

False

not x > y

True

42 and True

True

if x > 0:
 print('x is positive')

x is positive

if is a Python keyword. if statements have the same structure as function definitions: a
header followed by an indented statement or sequence of statements called a block.

The boolean expression after if is called the condition. If it is true, the statements in the
indented block run. If not, they don’t.

There is no limit to the number of statements that can appear in the block, but there has to be
at least one. Occasionally, it is useful to have a block that does nothing – usually as a place
keeper for code you haven’t written yet. In that case, you can use the pass statement, which
does nothing.

The word TODO in a comment is a conventional reminder that there’s something you need to
do later.

5.5. The else clause
An if statement can have a second part, called an else clause. The syntax looks like this:

If the condition is true, the first indented statement runs; otherwise, the second indented
statement runs.

In this example, if x is even, the remainder when x is divided by 2 is 0 , so the condition is
true and the program displays x is even . If x is odd, the remainder is 1 , so the condition is
false, and the program displays x is odd .

Since the condition must be true or false, exactly one of the alternatives will run. The
alternatives are called branches.

if x < 0:
 pass # TODO: need to handle negative values!

if x % 2 == 0:
 print('x is even')
else:
 print('x is odd')

x is odd

5.6. Chained conditionals
Sometimes there are more than two possibilities and we need more than two branches. One
way to express a computation like that is a chained conditional, which includes an elif
clause.

elif is an abbreviation of “else if”. There is no limit on the number of elif clauses. If there is
an else clause, it has to be at the end, but there doesn’t have to be one.

Each condition is checked in order. If the first is false, the next is checked, and so on. If one of
them is true, the corresponding branch runs and the if statement ends. Even if more than one
condition is true, only the first true branch runs.

5.7. Nested Conditionals
One conditional can also be nested within another. We could have written the example in the
previous section like this:

if x < y:
 print('x is less than y')
elif x > y:
 print('x is greater than y')
else:
 print('x and y are equal')

x is less than y

if x == y:
 print('x and y are equal')
else:
 if x < y:
 print('x is less than y')
 else:
 print('x is greater than y')

x is less than y

The outer if statement contains two branches. The first branch contains a simple statement.
The second branch contains another if statement, which has two branches of its own. Those
two branches are both simple statements, although they could have been conditional
statements as well.

Although the indentation of the statements makes the structure apparent, nested conditionals
can be difficult to read. I suggest you avoid them when you can.

Logical operators often provide a way to simplify nested conditional statements. Here’s an
example with a nested conditional.

The print statement runs only if we make it past both conditionals, so we get the same effect
with the and operator.

For this kind of condition, Python provides a more concise option:

if 0 < x:
 if x < 10:
 print('x is a positive single-digit number.')

x is a positive single-digit number.

if 0 < x and x < 10:
 print('x is a positive single-digit number.')

x is a positive single-digit number.

if 0 < x < 10:
 print('x is a positive single-digit number.')

x is a positive single-digit number.

5.8. Recursion
It is legal for a function to call itself. It may not be obvious why that is a good thing, but it turns
out to be one of the most magical things a program can do. Here’s an example.

If n is 0 or negative, countdown outputs the word, “Blastoff!” Otherwise, it outputs n and then
calls itself, passing n-1 as an argument.

Here’s what happens when we call this function with the argument 3 .

The execution of countdown begins with n=3 , and since n is greater than 0 , it displays 3 ,
and then calls itself.…

def countdown(n):
 if n <= 0:
 print('Blastoff!')
 else:
 print(n)
 countdown(n-1)

countdown(3)

3
2
1
Blastoff!

The execution of countdown begins with n=2 , and since n is greater than 0 , it displays
2 , and then calls itself.…

The execution of countdown begins with n=1 , and since n is greater than 0 , it
displays 1 , and then calls itself.…

The countdown that got n=1 returns.

The execution of countdown begins with n=0 , and since n is not greater than
0 , it displays “Blastoff!” and returns.

The countdown that got n=3 returns.

A function that calls itself is recursive. As another example, we can write a function that prints a
string n times.

If n is positive, print_n_times displays the value of string and then calls itself, passing along
string and n-1 as arguments.

If n is 0 or negative, the condition is false and print_n_times does nothing.

Here’s how it works.

For simple examples like this, it is probably easier to use a for loop. But we will see examples
later that are hard to write with a for loop and easy to write with recursion, so it is good to
start early.

5.9. Stack diagrams for recursive functions
Here’s a stack diagram that shows the frames created when we called countdown with n = 3 .

The countdown that got n=2 returns.

def print_n_times(string, n):
 if n > 0:
 print(string)
 print_n_times(string, n-1)

print_n_times('Spam ', 4)

Spam
Spam
Spam
Spam

The four countdown frames have different values for the parameter n . The bottom of the stack,
where n=0 , is called the base case. It does not make a recursive call, so there are no more
frames.

5.10. Infinite recursion
If a recursion never reaches a base case, it goes on making recursive calls forever, and the
program never terminates. This is known as infinite recursion, and it is generally not a good
idea. Here’s a minimal function with an infinite recursion.

Every time recurse is called, it calls itself, which creates another frame. In Python, there is a
limit to the number of frames that can be on the stack at the same time. If a program exceeds
the limit, it causes a runtime error.

def recurse():
 recurse()

recurse()

The traceback indicates that there were almost 3000 frames on the stack when the error
occurred.

If you encounter an infinite recursion by accident, review your function to confirm that there is a
base case that does not make a recursive call. And if there is a base case, check whether you are
guaranteed to reach it.

5.11. Keyboard input
The programs we have written so far accept no input from the user. They just do the same thing
every time.

Python provides a built-in function called input that stops the program and waits for the user
to type something. When the user presses Return or Enter, the program resumes and input
returns what the user typed as a string.

Before getting input from the user, you might want to display a prompt telling the user what to
type. input can take a prompt as an argument:

RecursionError Traceback (most recent call last)
Cell In[40], line 1
----> 1 recurse()

Cell In[38], line 2, in recurse()
 1 def recurse():
----> 2 recurse()

Cell In[38], line 2, in recurse()
 1 def recurse():
----> 2 recurse()

 [... skipping similar frames: recurse at line 2 (2957 times)]

Cell In[38], line 2, in recurse()
 1 def recurse():
----> 2 recurse()

RecursionError: maximum recursion depth exceeded

text = input()

The sequence \n at the end of the prompt represents a newline, which is a special character
that causes a line break – that way the user’s input appears below the prompt.

If you expect the user to type an integer, you can use the int function to convert the return
value to int .

But if they type something that’s not an integer, you’ll get a runtime error.

We will see how to handle this kind of error later.

name = input('What...is your name?\n')
name

What...is your name?
It is Arthur, King of the Britons

'It is Arthur, King of the Britons'

prompt = 'What...is the airspeed velocity of an unladen swallow?\n'
speed = input(prompt)
speed

What...is the airspeed velocity of an unladen swallow?
What do you mean: an African or European swallow?

'What do you mean: an African or European swallow?'

int(speed)

 

ValueError: invalid literal for int() with base 10: 'What do you mean: an African or E

5.12. Debugging
When a syntax or runtime error occurs, the error message contains a lot of information, but it
can be overwhelming. The most useful parts are usually:

What kind of error it was, and

Where it occurred.

Syntax errors are usually easy to find, but there are a few gotchas. Errors related to spaces and
tabs can be tricky because they are invisible and we are used to ignoring them.

In this example, the problem is that the second line is indented by one space. But the error
message points to y , which is misleading. Error messages indicate where the problem was
discovered, but the actual error might be earlier in the code.

The same is true of runtime errors. For example, suppose you are trying to convert a ratio to
decibels, like this:

x = 5
 y = 6

 Cell In[49], line 2
 y = 6
 ^
IndentationError: unexpected indent

import math
numerator = 9
denominator = 10
ratio = numerator // denominator
decibels = 10 * math.log10(ratio)

ValueError Traceback (most recent call last)
Cell In[51], line 5
 3 denominator = 10
 4 ratio = numerator // denominator
----> 5 decibels = 10 * math.log10(ratio)

ValueError: math domain error

The error message indicates line 5, but there is nothing wrong with that line. The problem is in
line 4, which uses integer division instead of floating-point division – as a result, the value of
ratio is 0 . When we call math.log10 , we get a ValueError with the message math domain
error , because 0 is not in the “domain” of valid arguments for math.log10 , because the
logarithm of 0 is undefined.

In general, you should take the time to read error messages carefully, but don’t assume that
everything they say is correct.

5.13. Glossary
recursion: The process of calling the function that is currently executing.

modulus operator: An operator, % , that works on integers and returns the remainder when
one number is divided by another.

boolean expression: An expression whose value is either True or False .

relational operator: One of the operators that compares its operands: == , != , > , < , >= ,
and <= .

logical operator: One of the operators that combines boolean expressions, including and , or ,
and not .

conditional statement: A statement that controls the flow of execution depending on some
condition.

condition: The boolean expression in a conditional statement that determines which branch
runs.

block: One or more statements indented to indicate they are part of another statement.

branch: One of the alternative sequences of statements in a conditional statement.

chained conditional: A conditional statement with a series of alternative branches.

nested conditional: A conditional statement that appears in one of the branches of another
conditional statement.

recursive: A function that calls itself is recursive.

base case: A conditional branch in a recursive function that does not make a recursive call.

infinite recursion: A recursion that doesn’t have a base case, or never reaches it. Eventually, an
infinite recursion causes a runtime error.

newline: A character that creates a line break between two parts of a string.

5.14. Exercises

5.14.1. Ask a virtual assistant
Ask a virtual assistant, “What are some uses of the modulus operator?”

Python provides operators to compute the logical operations and , or , and not , but it
doesn’t have an operator that computes the exclusive or operation, usually written xor .
Ask an assistant “What is the logical xor operation and how do I compute it in Python?”

In this chapter, we saw two ways to write an if statement with three branches, using a chained
conditional or a nested conditional. You can use a virtual assistant to convert from one to the
other. For example, ask a VA, “Convert this statement to a chained conditional.”

This cell tells Jupyter to provide detailed debugging information
when a runtime error occurs. Run it before working on the exercises.

%xmode Verbose

Exception reporting mode: Verbose

if x == y:
 print('x and y are equal')
else:
 if x < y:
 print('x is less than y')
 else:
 print('x is greater than y')

x is less than y

Ask a VA, “Rewrite this statement with a single conditional.”

See if a VA can simplify this unnecessary complexity.

Here’s an attempt at a recursive function that counts down by two.

It seems to work.

But it has an error. Ask a virtual assistant what’s wrong and how to fix it. Paste the solution it
provides back here and test it.

if 0 < x:
 if x < 10:
 print('x is a positive single-digit number.')

x is a positive single-digit number.

if not x <= 0 and not x >= 10:
 print('x is a positive single-digit number.')

x is a positive single-digit number.

def countdown_by_two(n):
 if n == 0:
 print('Blastoff!')
 else:
 print(n)
 countdown_by_two(n-2)

countdown_by_two(6)

6
4
2
Blastoff!

5.14.2. Exercise
The time module provides a function, also called time , that returns returns the number of
seconds since the “Unix epoch”, which is January 1, 1970, 00:00:00 UTC (Coordinated Universal
Time).

Use integer division and the modulus operator to compute the number of days since January 1,
1970 and the current time of day in hours, minutes, and seconds.

You can read more about the time module at https://docs.python.org/3/library/time.html.

5.14.3. Exercise
If you are given three sticks, you may or may not be able to arrange them in a triangle. For
example, if one of the sticks is 12 inches long and the other two are one inch long, you will not
be able to get the short sticks to meet in the middle. For any three lengths, there is a test to see
if it is possible to form a triangle:

Write a function named is_triangle that takes three integers as arguments, and that prints
either “Yes” or “No”, depending on whether you can or cannot form a triangle from sticks with
the given lengths. Hint: Use a chained conditional.

from time import time

now = time()
now

1716394001.8466134

If any of the three lengths is greater than the sum of the other two, then you cannot form
a triangle. Otherwise, you can. (If the sum of two lengths equals the third, they form what
is called a “degenerate” triangle.)

https://docs.python.org/3/library/time.html

5.14.4. Exercise
What is the output of the following program? Draw a stack diagram that shows the state of the
program when it prints the result.

5.14.5. Exercise
The following exercises use the jupyturtle module, described in Chapter 4.

Read the following function and see if you can figure out what it does. Then run it and see if
you got it right. Adjust the values of length , angle and factor and see what effect they have
on the result. If you are not sure you understand how it works, try asking a virtual assistant.

5.14.6. Exercise
Ask a virtual assistant “What is the Koch curve?”

def recurse(n, s):
 if n == 0:
 print(s)
 else:
 recurse(n-1, n+s)

recurse(3, 0)

6

from jupyturtle import forward, left, right, back

def draw(length):
 angle = 50
 factor = 0.6

 if length > 5:
 forward(length)
 left(angle)
 draw(factor * length)
 right(2 * angle)
 draw(factor * length)
 left(angle)
 back(length)

To draw a Koch curve with length x , all you have to do is

1. Draw a Koch curve with length x/3 .

2. Turn left 60 degrees.

3. Draw a Koch curve with length x/3 .

4. Turn right 120 degrees.

5. Draw a Koch curve with length x/3 .

6. Turn left 60 degrees.

7. Draw a Koch curve with length x/3 .

The exception is if x is less than 5 – in that case, you can just draw a straight line with length
x .

Write a function called koch that takes x as an argument and draws a Koch curve with the
given length.

The result should look like this:

5.14.7. Exercise
Virtual assistants know about the functions in the jupyturtle module, but there are many
versions of these functions, with different names, so a VA might not know which one you are
talking about.

To solve this problem, you can provide additional information before you ask a question. For
example, you could start a prompt with “Here’s a program that uses the jupyturtle module,”

make_turtle(delay=0)
koch(120)

and then paste in one of the examples from this chapter. After that, the VA should be able to
generate code that uses this module.

As an example, ask a VA for a program that draws a Sierpiński triangle. The code you get should
be a good starting place, but you might have to do some debugging. If the first attempt doesn’t
work, you can tell the VA what happened and ask for help – or you can debug it yourself.

Here’s what the result might look like, although the version you get might be different.

Think Python: 3rd Edition

Copyright 2024 Allen B. Downey

Code license: MIT License

Text license: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

make_turtle(delay=0, height=200)

draw_sierpinski(100, 3)

https://allendowney.github.io/ThinkPython/index.html
https://allendowney.com/
https://mit-license.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Return Values
Contents

6.1. Some functions have return values

6.2. And some have None

6.3. Return values and conditionals

6.4. Incremental development

6.5. Boolean functions

6.6. Recursion with return values

6.7. Leap of faith

6.8. Fibonacci

6.9. Checking types

6.10. Debugging

6.11. Glossary

6.12. Exercises

You can order print and ebook versions of Think Python 3e from Bookshop.org and Amazon.

In previous chapters, we’ve used built-in functions – like abs and round – and functions in the
math module – like sqrt and pow . When you call one of these functions, it returns a value you
can assign to a variable or use as part of an expression.

The functions we have written so far are different. Some use the print function to display
values, and some use turtle functions to draw figures. But they don’t return values we assign to
variables or use in expressions.

In this chapter, we’ll see how to write functions that return values.

Print to PDF

https://bookshop.org/a/98697/9781098155438
https://www.amazon.com/_/dp/1098155432?smid=ATVPDKIKX0DER&_encoding=UTF8&tag=oreilly20-20&_encoding=UTF8&tag=greenteapre01-20&linkCode=ur2&linkId=e2a529f94920295d27ec8a06e757dc7c&camp=1789&creative=9325

6.1. Some functions have return values
When you call a function like math.sqrt , the result is called a return value. If the function call
appears at the end of a cell, Jupyter displays the return value immediately.

If you assign the return value to a variable, it doesn’t get displayed.

But you can display it later.

Or you can use the return value as part of an expression.

Here’s an example of a function that returns a value.

circle_area takes radius as a parameter and computes the area of a circle with that radius.

The last line is a return statement that returns the value of area .

import math

math.sqrt(42 / math.pi)

3.656366395715726

radius = math.sqrt(42 / math.pi)

radius

3.656366395715726

radius + math.sqrt(42 / math.pi)

7.312732791431452

def circle_area(radius):
 area = math.pi * radius**2
 return area

If we call the function like this, Jupyter displays the return value.

We can assign the return value to a variable.

Or use it as part of an expression.

Later we can display the value of the variable we assigned the result to.

But we can’t access area .

area is a local variable in a function, so we can’t access it from outside the function.

circle_area(radius)

42.00000000000001

a = circle_area(radius)

circle_area(radius) + 2 * circle_area(radius / 2)

63.000000000000014

a

42.00000000000001

area

NameError: name 'area' is not defined

6.2. And some have None
If a function doesn’t have a return statement, it returns None , which is a special value like
True and False . For example, here’s the repeat function from Chapter 3.

If we call it like this, it displays the first line of the Monty Python song “Finland”.

This function uses the print function to display a string, but it does not use a return
statement to return a value. If we assign the result to a variable, it displays the string anyway.

And if we display the value of the variable, we get nothing.

result actually has a value, but Jupyter doesn’t show it. However, we can display it like this.

The return value from repeat is None .

Now here’s a function similar to repeat except that has a return value.

def repeat(word, n):
 print(word * n)

repeat('Finland, ', 3)

Finland, Finland, Finland,

result = repeat('Finland, ', 3)

Finland, Finland, Finland,

result

print(result)

None

Notice that we can use an expression in a return statement, not just a variable.

With this version, we can assign the result to a variable. When the function runs, it doesn’t
display anything.

But later we can display the value assigned to line .

A function like this is called a pure function because it doesn’t display anything or have any
other effect – other than returning a value.

6.3. Return values and conditionals
If Python did not provide abs , we could write it like this.

If x is negative, the first return statement returns -x and the function ends immediately.
Otherwise, the second return statement returns x and the function ends. So this function is
correct.

However, if you put return statements in a conditional, you have to make sure that every
possible path through the program hits a return statement. For example, here’s an incorrect
version of absolute_value .

def repeat_string(word, n):
 return word * n

line = repeat_string('Spam, ', 4)

line

'Spam, Spam, Spam, Spam, '

def absolute_value(x):
 if x < 0:
 return -x
 else:
 return x

Here’s what happens if we call this function with 0 as an argument.

We get nothing! Here’s the problem: when x is 0 , neither condition is true, and the function
ends without hitting a return statement, which means that the return value is None , so Jupyter
displays nothing.

As another example, here’s a version of absolute_value with an extra return statement at the
end.

If x is negative, the first return statement runs and the function ends. Otherwise the second
return statement runs and the function ends. Either way, we never get to the third return

statement – so it can never run.

Code that can never run is called dead code. In general, dead code doesn’t do any harm, but it
often indicates a misunderstanding, and it might be confusing to someone trying to understand
the program.

6.4. Incremental development
As you write larger functions, you might find yourself spending more time debugging. To deal
with increasingly complex programs, you might want to try incremental development, which is
a way of adding and testing only a small amount of code at a time.

def absolute_value_wrong(x):
 if x < 0:
 return -x
 if x > 0:
 return x

absolute_value_wrong(0)

def absolute_value_extra_return(x):
 if x < 0:
 return -x
 else:
 return x

 return 'This is dead code'

As an example, suppose you want to find the distance between two points represented by the
coordinates and . By the Pythagorean theorem, the distance is:

The first step is to consider what a distance function should look like in Python – that is, what
are the inputs (parameters) and what is the output (return value)?

For this function, the inputs are the coordinates of the points. The return value is the distance.
Immediately you can write an outline of the function:

This version doesn’t compute distances yet – it always returns zero. But it is a complete function
with a return value, which means that you can test it before you make it more complicated.

To test the new function, we’ll call it with sample arguments:

I chose these values so that the horizontal distance is 3 and the vertical distance is 4 . That
way, the result is 5 , the hypotenuse of a 3-4-5 right triangle. When testing a function, it is
useful to know the right answer.

At this point we have confirmed that the function runs and returns a value, and we can start
adding code to the body. A good next step is to find the differences x2 - x1 and y2 - y1 .
Here’s a version that stores those values in temporary variables and displays them.

(x1, y1) (x2, y2)

distance = √(x2 − x1)2 + (y2 − y1)2

def distance(x1, y1, x2, y2):
 return 0.0

distance(1, 2, 4, 6)

0.0

def distance(x1, y1, x2, y2):
 dx = x2 - x1
 dy = y2 - y1
 print('dx is', dx)
 print('dy is', dy)
 return 0.0

If the function is working, it should display dx is 3 and dy is 4 . If so, we know that the
function is getting the right arguments and performing the first computation correctly. If not,
there are only a few lines to check.

Good so far. Next we compute the sum of squares of dx and dy :

Again, we can run the function and check the output, which should be 25 .

Finally, we can use math.sqrt to compute the distance:

distance(1, 2, 4, 6)

dx is 3
dy is 4

0.0

def distance(x1, y1, x2, y2):
 dx = x2 - x1
 dy = y2 - y1
 dsquared = dx**2 + dy**2
 print('dsquared is: ', dsquared)
 return 0.0

distance(1, 2, 4, 6)

dsquared is: 25

0.0

def distance(x1, y1, x2, y2):
 dx = x2 - x1
 dy = y2 - y1
 dsquared = dx**2 + dy**2
 result = math.sqrt(dsquared)
 print("result is", result)

And test it.

The result is correct, but this version of the function displays the result rather than returning it,
so the return value is None .

We can fix that by replacing the print function with a return statement.

This version of distance is a pure function. If we call it like this, only the result is displayed.

And if we assign the result to a variable, nothing is displayed.

The print statements we wrote are useful for debugging, but once the function is working, we
can remove them. Code like that is called scaffolding because it is helpful for building the
program but is not part of the final product.

This example demonstrates incremental development. The key aspects of this process are:

1. Start with a working program, make small changes, and test after every change.

2. Use variables to hold intermediate values so you can display and check them.

3. Once the program is working, remove the scaffolding.

distance(1, 2, 4, 6)

result is 5.0

def distance(x1, y1, x2, y2):
 dx = x2 - x1
 dy = y2 - y1
 dsquared = dx**2 + dy**2
 result = math.sqrt(dsquared)
 return result

distance(1, 2, 4, 6)

5.0

d = distance(1, 2, 4, 6)

At any point, if there is an error, you should have a good idea where it is. Incremental
development can save you a lot of debugging time.

6.5. Boolean functions
Functions can return the boolean values True and False , which is often convenient for
encapsulating a complex test in a function. For example, is_divisible checks whether x is
divisible by y with no remainder.

Here’s how we use it.

Inside the function, the result of the == operator is a boolean, so we can write the function
more concisely by returning it directly.

Boolean functions are often used in conditional statements.

def is_divisible(x, y):
 if x % y == 0:
 return True
 else:
 return False

is_divisible(6, 4)

False

is_divisible(6, 3)

True

def is_divisible(x, y):
 return x % y == 0

if is_divisible(6, 2):
 print('divisible')

It might be tempting to write something like this:

But the comparison is unnecessary.

6.6. Recursion with return values
Now that we can write functions with return values, we can write recursive functions with return
values, and with that capability, we have passed an important threshold – the subset of Python
we have is now Turing complete, which means that we can perform any computation that can
be described by an algorithm.

To demonstrate recursion with return values, we’ll evaluate a few recursively defined
mathematical functions. A recursive definition is similar to a circular definition, in the sense that
the definition refers to the thing being defined. A truly circular definition is not very useful:

If you saw that definition in the dictionary, you might be annoyed. On the other hand, if you
looked up the definition of the factorial function, denoted with the symbol , you might get
something like this:

This definition says that the factorial of is , and the factorial of any other value, , is
multiplied by the factorial of .

If you can write a recursive definition of something, you can write a Python program to evaluate
it. Following an incremental development process, we’ll start with a function that take n as a

divisible

if is_divisible(6, 2) == True:
 print('divisible')

divisible

vorpal: An adjective used to describe something that is vorpal.

!

0! = 1

n! = n (n − 1)!

0 1 n n

n − 1

parameter and always returns 0 .

Now let’s add the first part of the definition – if the argument happens to be 0 , all we have to
do is return 1 :

Now let’s fill in the second part – if n is not 0 , we have to make a recursive call to find the
factorial of n-1 and then multiply the result by n :

The flow of execution for this program is similar to the flow of countdown in Chapter 5. If we call
factorial with the value 3 :

Since 3 is not 0 , we take the second branch and calculate the factorial of n-1 .…

def factorial(n):
 return 0

def factorial(n):
 if n == 0:
 return 1
 else:
 return 0

def factorial(n):
 if n == 0:
 return 1
 else:
 recurse = factorial(n-1)
 return n * recurse

Since 2 is not 0 , we take the second branch and calculate the factorial of n-1 .…

The return value, 1 , is multiplied by n , which is 2 , and the result is returned.

Since 1 is not 0 , we take the second branch and calculate the factorial of n-1 .…

The return value, 1 , is multiplied by n , which is 1 , and the result is returned.

Since 0 equals 0 , we take the first branch and return 1 without making any
more recursive calls.

The return value 2 is multiplied by n , which is 3 , and the result, 6 , becomes the return value
of the function call that started the whole process.

The following figure shows the stack diagram for this sequence of function calls.

The return values are shown being passed back up the stack. In each frame, the return value is
the product of n and recurse .

In the last frame, the local variable recurse does not exist because the branch that creates it
does not run.

6.7. Leap of faith
Following the flow of execution is one way to read programs, but it can quickly become
overwhelming. An alternative is what I call the “leap of faith”. When you come to a function call,
instead of following the flow of execution, you assume that the function works correctly and
returns the right result.

In fact, you are already practicing this leap of faith when you use built-in functions. When you
call abs or math.sqrt , you don’t examine the bodies of those functions – you just assume that
they work.

The same is true when you call one of your own functions. For example, earlier we wrote a
function called is_divisible that determines whether one number is divisible by another. Once
we convince ourselves that this function is correct, we can use it without looking at the body
again.

The same is true of recursive programs. When you get to the recursive call, instead of following
the flow of execution, you should assume that the recursive call works and then ask yourself,
“Assuming that I can compute the factorial of , can I compute the factorial of ?” The
recursive definition of factorial implies that you can, by multiplying by .

Of course, it’s a bit strange to assume that the function works correctly when you haven’t
finished writing it, but that’s why it’s called a leap of faith!

6.8. Fibonacci
After factorial , the most common example of a recursive function is fibonacci , which has
the following definition:

Translated into Python, it looks like this:

If you try to follow the flow of execution here, even for small values of , your head explodes.
But according to the leap of faith, if you assume that the two recursive calls work correctly, you
can be confident that the last return statement is correct.

As an aside, this way of computing Fibonacci numbers is very inefficient. In Chapter 10 I’ll explain
why and suggest a way to improve it.

6.9. Checking types
What happens if we call factorial and give it 1.5 as an argument?

n − 1 n

n

fibonacci(0) = 0

fibonacci(1) = 1

fibonacci(n) = fibonacci(n − 1) + fibonacci(n − 2)

def fibonacci(n):
 if n == 0:
 return 0
 elif n == 1:
 return 1
 else:
 return fibonacci(n-1) + fibonacci(n-2)

n

https://allendowney.github.io/ThinkPython/chap10.html#section-memos

It looks like an infinite recursion. How can that be? The function has base cases when n == 1 or
n == 0 . But if n is not an integer, we can miss the base case and recurse forever.

In this example, the initial value of n is 1.5 . In the first recursive call, the value of n is 0.5 . In
the next, it is -0.5 . From there, it gets smaller (more negative), but it will never be 0 .

To avoid infinite recursion we can use the built-in function isinstance to check the type of the
argument. Here’s how we check whether a value is an integer.

Now here’s a version of factorial with error-checking.

First it checks whether n is an integer. If not, it displays an error message and returns None .

factorial(1.5)

RecursionError: maximum recursion depth exceeded in comparison

isinstance(3, int)

True

isinstance(1.5, int)

False

def factorial(n):
 if not isinstance(n, int):
 print('factorial is only defined for integers.')
 return None
 elif n < 0:
 print('factorial is not defined for negative numbers.')
 return None
 elif n == 0:
 return 1
 else:
 return n * factorial(n-1)

Then it checks whether n is negative. If so, it displays an error message and returns None.

If we get past both checks, we know that n is a non-negative integer, so we can be confident
the recursion will terminate. Checking the parameters of a function to make sure they have the
correct types and values is called input validation.

6.10. Debugging
Breaking a large program into smaller functions creates natural checkpoints for debugging. If a
function is not working, there are three possibilities to consider:

There is something wrong with the arguments the function is getting – that is, a
precondition is violated.

There is something wrong with the function – that is, a postcondition is violated.

The caller is doing something wrong with the return value.

To rule out the first possibility, you can add a print statement at the beginning of the function
that displays the values of the parameters (and maybe their types). Or you can write code that
checks the preconditions explicitly.

If the parameters look good, you can add a print statement before each return statement
and display the return value. If possible, call the function with arguments that make it easy check
the result.

If the function seems to be working, look at the function call to make sure the return value is
being used correctly – or used at all!

factorial('crunchy frog')

factorial is only defined for integers.

factorial(-2)

factorial is not defined for negative numbers.

Adding print statements at the beginning and end of a function can help make the flow of
execution more visible. For example, here is a version of factorial with print statements:

space is a string of space characters that controls the indentation of the output. Here is the
result of factorial(3) :

If you are confused about the flow of execution, this kind of output can be helpful. It takes some
time to develop effective scaffolding, but a little bit of scaffolding can save a lot of debugging.

6.11. Glossary
return value: The result of a function. If a function call is used as an expression, the return value
is the value of the expression.

pure function: A function that does not display anything or have any other effect, other than
returning a return value.

def factorial(n):
 space = ' ' * (4 * n)
 print(space, 'factorial', n)
 if n == 0:
 print(space, 'returning 1')
 return 1
 else:
 recurse = factorial(n-1)
 result = n * recurse
 print(space, 'returning', result)
 return result

factorial(3)

 factorial 3
 factorial 2
 factorial 1
 factorial 0
 returning 1
 returning 1
 returning 2
 returning 6

6

dead code: Part of a program that can never run, often because it appears after a return
statement.

incremental development: A program development plan intended to avoid debugging by
adding and testing only a small amount of code at a time.

scaffolding: Code that is used during program development but is not part of the final version.

Turing complete: A language, or subset of a language, is Turing complete if it can perform any
computation that can be described by an algorithm.

input validation: Checking the parameters of a function to make sure they have the correct
types and values

6.12. Exercises

6.12.1. Ask a virtual assistant
In this chapter, we saw an incorrect function that can end without returning a value.

And a version of the same function that has dead code at the end.

This cell tells Jupyter to provide detailed debugging information
when a runtime error occurs. Run it before working on the exercises.

%xmode Verbose

Exception reporting mode: Verbose

def absolute_value_wrong(x):
 if x < 0:
 return -x
 if x > 0:
 return x

And we saw the following example, which is correct but not idiomatic.

Ask a virtual assistant what’s wrong with each of these functions and see if it can spot the errors
or improve the style.

Then ask “Write a function that takes coordinates of two points and computes the distance
between them.” See if the result resembles the version of distance we wrote in this chapter.

6.12.2. Exercise
Use incremental development to write a function called hypot that returns the length of the
hypotenuse of a right triangle given the lengths of the other two legs as arguments.

Note: There’s a function in the math module called hypot that does the same thing, but you
should not use it for this exercise!

Even if you can write the function correctly on the first try, start with a function that always
returns 0 and practice making small changes, testing as you go. When you are done, the
function should only return a value – it should not display anything.

6.12.3. Exercise
Write a boolean function, is_between(x, y, z) , that returns True if or if
, and False otherwise.

def absolute_value_extra_return(x):
 if x < 0:
 return -x
 else:
 return x

 return 'This is dead code.'

def is_divisible(x, y):
 if x % y == 0:
 return True
 else:
 return False

x < y < z z < y < x

6.12.4. Exercise
The Ackermann function, , is defined:

Write a function named ackermann that evaluates the Ackermann function. What happens if you
call ackermann(5, 5) ?

6.12.5. Exercise
The greatest common divisor (GCD) of and is the largest number that divides both of them
with no remainder.

One way to find the GCD of two numbers is based on the observation that if is the remainder
when is divided by , then . As a base case, we can use .

Write a function called gcd that takes parameters a and b and returns their greatest common
divisor.

Think Python: 3rd Edition

Copyright 2024 Allen B. Downey

Code license: MIT License

Text license: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

A(m,n)

A(m,n) =
⎧⎪⎨⎪⎩n + 1 if m = 0
A(m − 1, 1) if m > 0 and n = 0
A(m − 1,A(m,n − 1)) if m > 0 and n > 0.

a b

r

a b gcd(a, b) = gcd(b, r) gcd(a, 0) = a

https://allendowney.github.io/ThinkPython/index.html
https://allendowney.com/
https://mit-license.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Iteration and Search
Contents

7.1. Loops and strings

7.2. Reading the word list

7.3. Updating variables

7.4. Looping and counting

7.5. The in operator

7.6. Search

7.7. Doctest

7.8. Glossary

7.9. Exercises

You can order print and ebook versions of Think Python 3e from Bookshop.org and Amazon.

In 1939 Ernest Vincent Wright published a 50,000 word novel called Gadsby that does not
contain the letter “e”. Since “e” is the most common letter in English, writing even a few words
without using it is difficult. To get a sense of how difficult, in this chapter we’ll compute the
fraction of English words have at least one “e”.

For that, we’ll use for statements to loop through the letters in a string and the words in a file,
and we’ll update variables in a loop to count the number of words that contain an “e”. We’ll use
the in operator to check whether a letter appears in a word, and you’ll learn a programming
pattern called a “linear search”.

As an exercise, you’ll use these tools to solve a word puzzle called “Spelling Bee”.

7.1. Loops and strings
In Chapter 3 we saw a for loop that uses the range function to display a sequence of
numbers.

https://bookshop.org/a/98697/9781098155438
https://www.amazon.com/_/dp/1098155432?smid=ATVPDKIKX0DER&_encoding=UTF8&tag=oreilly20-20&_encoding=UTF8&tag=greenteapre01-20&linkCode=ur2&linkId=e2a529f94920295d27ec8a06e757dc7c&camp=1789&creative=9325

This version uses the keyword argument end so the print function puts a space after each
number rather than a newline.

We can also use a for loop to display the letters in a string.

Notice that I changed the name of the variable from i to letter , which provides more
information about the value it refers to. The variable defined in a for loop is called the loop
variable.

Now that we can loop through the letters in a word, we can check whether it contains the letter
“e”.

Before we go on, let’s encapsulate that loop in a function.

And let’s make it a pure function that return True if the word contains an “e” and False
otherwise.

for i in range(3):
 print(i, end=' ')

0 1 2

for letter in 'Gadsby':
 print(letter, end=' ')

G a d s b y

for letter in "Gadsby":
 if letter == 'E' or letter == 'e':
 print('This word has an "e"')

def has_e():
 for letter in "Gadsby":
 if letter == 'E' or letter == 'e':
 print('This word has an "e"')

We can generalize it to take the word as a parameter.

Now we can test it like this:

7.2. Reading the word list
To see how many words contain an “e”, we’ll need a word list. The one we’ll use is a list of about
114,000 official crosswords; that is, words that are considered valid in crossword puzzles and
other word games.

The word list is in a file called words.txt , which is downloaded in the notebook for this
chapter. To read it, we’ll use the built-in function open , which takes the name of the file as a
parameter and returns a file object we can use to read the file.

def has_e():
 for letter in "Gadsby":
 if letter == 'E' or letter == 'e':
 return True
 return False

def has_e(word):
 for letter in word:
 if letter == 'E' or letter == 'e':
 return True
 return False

has_e('Gadsby')

False

has_e('Emma')

True

file_object = open('words.txt')

The file object provides a function called readline , which reads characters from the file until it
gets to a newline and returns the result as a string:

Notice that the syntax for calling readline is different from functions we’ve seen so far. That’s
because it is a method, which is a function associated with an object. In this case readline is
associated with the file object, so we call it using the name of the object, the dot operator, and
the name of the method.

The first word in the list is “aa”, which is a kind of lava. The sequence \n represents the newline
character that separates this word from the next.

The file object keeps track of where it is in the file, so if you call readline again, you get the
next word:

To remove the newline from the end of the word, we can use strip , which is a method
associated with strings, so we can call it like this.

strip removes whitespace characters – including spaces, tabs, and newlines – from the
beginning and end of the string.

You can also use a file object as part of a for loop. This program reads words.txt and prints
each word, one per line:

file_object.readline()

'aa\n'

line = file_object.readline()
line

'aah\n'

word = line.strip()
word

'aah'

Now that we can read the word list, the next step is to count them. For that, we will need the
ability to update variables.

7.3. Updating variables
As you may have discovered, it is legal to make more than one assignment to the same variable.
A new assignment makes an existing variable refer to a new value (and stop referring to the old
value).

For example, here is an initial assignment that creates a variable.

And here is an assignment that changes the value of a variable.

The following figure shows what these assignments looks like in a state diagram.

The dotted arrow indicates that x no longer refers to 5 . The solid arrow indicates that it now
refers to 7 .

for line in open('words.txt'):
 word = line.strip()
 print(word)

x = 5
x

5

x = 7
x

7

A common kind of assignment is an update, where the new value of the variable depends on
the old.

This statement means “get the current value of x , add one, and assign the result back to x .”

If you try to update a variable that doesn’t exist, you get an error, because Python evaluates the
expression on the right before it assigns a value to the variable on the left.

Before you can update a variable, you have to initialize it, usually with a simple assignment:

Increasing the value of a variable is called an increment; decreasing the value is called a
decrement. Because these operations are so common, Python provides augmented
assignment operators that update a variable more concisely. For example, the += operator
increments a variable by the given amount.

x = x + 1
x

8

z = z + 1

NameError: name 'z' is not defined

z = 0
z = z + 1
z

1

z += 2
z

3

There are augmented assignment operators for the other arithmetic operators, including -=
and *= .

7.4. Looping and counting
The following program counts the number of words in the word list.

It starts by initializing total to 0 . Each time through the loop, it increments total by 1 . So
when the loop exits, total refers to the total number of words.

A variable like this, used to count the number of times something happens, is called a counter.

We can add a second counter to the program to keep track of the number of words that
contain an “e”.

Let’s see how many words contain an “e”.

total = 0

for line in open('words.txt'):
 word = line.strip()
 total += 1

total

113783

total = 0
count = 0

for line in open('words.txt'):
 word = line.strip()
 total = total + 1
 if has_e(word):
 count += 1

count

As a percentage of total , about two-thirds of the words use the letter “e”.

So you can understand why it’s difficult to craft a book without using any such words.

7.5. The in operator
The version of has_e we wrote in this chapter is more complicated than it needs to be. Python
provides an operator, in , that checks whether a character appears in a string.

So we can rewrite has_e like this.

And because the conditional of the if statement has a boolean value, we can eliminate the
if statement and return the boolean directly.

76162

count / total * 100

66.93618554617122

word = 'Gadsby'
'e' in word

False

def has_e(word):
 if 'E' in word or 'e' in word:
 return True
 else:
 return False

def has_e(word):
 return 'E' in word or 'e' in word

We can simplify this function even more using the method lower , which converts the letters in
a string to lowercase. Here’s an example.

lower makes a new string – it does not modify the existing string – so the value of word is
unchanged.

Here’s how we can use lower in has_e .

7.6. Search
Based on this simpler version of has_e , let’s write a more general function called uses_any
that takes a second parameter that is a string of letters. It returns True if the word uses any of
the letters and False otherwise.

word.lower()

'gadsby'

word

'Gadsby'

def has_e(word):
 return 'e' in word.lower()

has_e('Gadsby')

False

has_e('Emma')

True

Here’s an example where the result is True .

And another where it is False .

uses_any converts word and letters to lowercase, so it works with any combination of
cases.

The structure of uses_any is similar to has_e . It loops through the letters in word and checks
them one at a time. If it finds one that appears in letters , it returns True immediately. If it
gets all the way through the loop without finding any, it returns False .

This pattern is called a linear search. In the exercises at the end of this chapter, you’ll write
more functions that use this pattern.

def uses_any(word, letters):
 for letter in word.lower():
 if letter in letters.lower():
 return True
 return False

uses_any('banana', 'aeiou')

True

uses_any('apple', 'xyz')

False

uses_any('Banana', 'AEIOU')

True

7.7. Doctest
In Chapter 4 we used a docstring to document a function – that is, to explain what it does. It is
also possible to use a docstring to test a function. Here’s a version of uses_any with a docstring
that includes tests.

Each test begins with >>> , which is used as a prompt in some Python environments to indicate
where the user can type code. In a doctest, the prompt is followed by an expression, usually a
function call. The following line indicates the value the expression should have if the function
works correctly.

In the first example, 'banana' uses 'a' , so the result should be True . In the second example,
'apple' does not use any of 'xyz' , so the result should be False .

To run these tests, we have to import the doctest module and run a function called
run_docstring_examples . To make this function easier to use, I wrote the following function,

which takes a function object as an argument.

We haven’t learned about globals and __name__ yet – you can ignore them. Now we can test
uses_any like this.

def uses_any(word, letters):
 """Checks if a word uses any of a list of letters.

 >>> uses_any('banana', 'aeiou')
 True
 >>> uses_any('apple', 'xyz')
 False
 """
 for letter in word.lower():
 if letter in letters.lower():
 return True
 return False

from doctest import run_docstring_examples

def run_doctests(func):
 run_docstring_examples(func, globals(), name=func.__name__)

run_doctests(uses_any)

https://allendowney.github.io/ThinkPython/chap04.html#section-docstring

run_doctests finds the expressions in the docstring and evaluates them. If the result is the
expected value, the test passes. Otherwise it fails.

If all tests pass, run_doctests displays no output – in that case, no news is good news. To see
what happens when a test fails, here’s an incorrect version of uses_any .

And here’s what happens when we test it.

The output includes the example that failed, the value the function was expected to produce,
and the value the function actually produced.

If you are not sure why this test failed, you’ll have a chance to debug it as an exercise.

7.8. Glossary
loop variable: A variable defined in the header of a for loop.

def uses_any_incorrect(word, letters):
 """Checks if a word uses any of a list of letters.

 >>> uses_any_incorrect('banana', 'aeiou')
 True
 >>> uses_any_incorrect('apple', 'xyz')
 False
 """
 for letter in word.lower():
 if letter in letters.lower():
 return True
 else:
 return False # INCORRECT!

run_doctests(uses_any_incorrect)

**
File "__main__", line 4, in uses_any_incorrect
Failed example:
 uses_any_incorrect('banana', 'aeiou')
Expected:
 True
Got:
 False

file object: An object that represents an open file and keeps track of which parts of the file
have been read or written.

method: A function that is associated with an object and called using the dot operator.

update: An assignment statement that give a new value to a variable that already exists, rather
than creating a new variables.

initialize: Create a new variable and give it a value.

increment: Increase the value of a variable.

decrement: Decrease the value of a variable.

counter: A variable used to count something, usually initialized to zero and then incremented.

linear search: A computational pattern that searches through a sequence of elements and
stops when it finds what it is looking for.

pass: If a test runs and the result is as expected, the test passes.

fail: If a test runs and the result is not as expected, the test fails.

7.9. Exercises

7.9.1. Ask a virtual assistant
In uses_any , you might have noticed that the first return statement is inside the loop and the
second is outside.

This cell tells Jupyter to provide detailed debugging information
when a runtime error occurs. Run it before working on the exercises.

%xmode Verbose

Exception reporting mode: Verbose

When people first write functions like this, it is a common error to put both return statements
inside the loop, like this.

Ask a virtual assistant what’s wrong with this version.

7.9.2. Exercise
Write a function named uses_none that takes a word and a string of forbidden letters, and
returns True if the word does not use any of the forbidden letters.

Here’s an outline of the function that includes two doctests. Fill in the function so it passes
these tests, and add at least one more doctest.

7.9.3. Exercise
Write a function called uses_only that takes a word and a string of letters, and that returns
True if the word contains only letters in the string.

def uses_any(word, letters):
 for letter in word.lower():
 if letter in letters.lower():
 return True
 return False

def uses_any_incorrect(word, letters):
 for letter in word.lower():
 if letter in letters.lower():
 return True
 else:
 return False # INCORRECT!

def uses_none(word, forbidden):
 """Checks whether a word avoid forbidden letters.

 >>> uses_none('banana', 'xyz')
 True
 >>> uses_none('apple', 'efg')
 False
 """
 return None

Here’s an outline of the function that includes two doctests. Fill in the function so it passes
these tests, and add at least one more doctest.

7.9.4. Exercise
Write a function called uses_all that takes a word and a string of letters, and that returns
True if the word contains all of the letters in the string at least once.

Here’s an outline of the function that includes two doctests. Fill in the function so it passes
these tests, and add at least one more doctest.

7.9.5. Exercise
The New York Times publishes a daily puzzle called “Spelling Bee” that challenges readers to
spell as many words as possible using only seven letters, where one of the letters is required.
The words must have at least four letters.

For example, on the day I wrote this, the letters were ACDLORT , with R as the required letter. So
“color” is an acceptable word, but “told” is not, because it does not use R , and “rat” is not
because it has only three letters. Letters can be repeated, so “ratatat” is acceptable.

def uses_only(word, available):
 """Checks whether a word uses only the available letters.

 >>> uses_only('banana', 'ban')
 True
 >>> uses_only('apple', 'apl')
 False
 """
 return None

def uses_all(word, required):
 """Checks whether a word uses all required letters.

 >>> uses_all('banana', 'ban')
 True
 >>> uses_all('apple', 'api')
 False
 """
 return None

Write a function called check_word that checks whether a given word is acceptable. It should
take as parameters the word to check, a string of seven available letters, and a string containing
the single required letter. You can use the functions you wrote in previous exercises.

Here’s an outline of the function that includes doctests. Fill in the function and then check that
all tests pass.

According to the “Spelling Bee” rules,

Four-letter words are worth 1 point each.

Longer words earn 1 point per letter.

Each puzzle includes at least one “pangram” which uses every letter. These are worth 7
extra points!

Write a function called score_word that takes a word and a string of available letters and
returns its score. You can assume that the word is acceptable.

Again, here’s an outline of the function with doctests.

def check_word(word, available, required):
 """Check whether a word is acceptable.

 >>> check_word('color', 'ACDLORT', 'R')
 True
 >>> check_word('ratatat', 'ACDLORT', 'R')
 True
 >>> check_word('rat', 'ACDLORT', 'R')
 False
 >>> check_word('told', 'ACDLORT', 'R')
 False
 >>> check_word('bee', 'ACDLORT', 'R')
 False
 """
 return False

7.9.6. Exercise
You might have noticed that the functions you wrote in the previous exercises had a lot in
common. In fact, they are so similar you can often use one function to write another.

For example, if a word uses none of a set forbidden letters, that means it doesn’t use any. So we
can write a version of uses_none like this.

There is also a similarity between uses_only and uses_all that you can take advantage of. If
you have a working version of uses_only , see if you can write a version of uses_all that calls
uses_only .

7.9.7. Exercise
If you got stuck on the previous question, try asking a virtual assistant, “Given a function,
uses_only , which takes two strings and checks that the first uses only the letters in the second,

def word_score(word, available):
 """Compute the score for an acceptable word.

 >>> word_score('card', 'ACDLORT')
 1
 >>> word_score('color', 'ACDLORT')
 5
 >>> word_score('cartload', 'ACDLORT')
 15
 """
 return 0

def uses_none(word, forbidden):
 """Checks whether a word avoids forbidden letters.

 >>> uses_none('banana', 'xyz')
 True
 >>> uses_none('apple', 'efg')
 False
 >>> uses_none('', 'abc')
 True
 """
 return not uses_any(word, forbidden)

use it to write uses_all , which takes two strings and checks whether the first uses all the
letters in the second, allowing repeats.”

Use run_doctests to check the answer.

7.9.8. Exercise
Now let’s see if we can write uses_all based on uses_any .

Ask a virtual assistant, “Given a function, uses_any , which takes two strings and checks whether
the first uses any of the letters in the second, can you use it to write uses_all , which takes two
strings and checks whether the first uses all the letters in the second, allowing repeats.”

If it says it can, be sure to test the result!

Think Python: 3rd Edition

Copyright 2024 Allen B. Downey

Code license: MIT License

Text license: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

Here's what I got from ChatGPT 4o December 26, 2024
It's correct, but it makes multiple calls to uses_any

def uses_all(s1, s2):
 """Checks if all characters in s2 are in s1, allowing repeats."""
 for char in s2:
 if not uses_any(s1, char):
 return False
 return True

https://allendowney.github.io/ThinkPython/index.html
https://allendowney.com/
https://mit-license.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Strings and Regular Expressions
Contents

8.1. A string is a sequence

8.2. String slices

8.3. Strings are immutable

8.4. String comparison

8.5. String methods

8.6. Writing files

8.7. Find and replace

8.8. Regular expressions

8.9. String substitution

8.10. Debugging

8.11. Glossary

8.12. Exercises

You can order print and ebook versions of Think Python 3e from Bookshop.org and Amazon.

Strings are not like integers, floats, and booleans. A string is a sequence, which means it
contains multiple values in a particular order. In this chapter we’ll see how to access the values
that make up a string, and we’ll use functions that process strings.

We’ll also use regular expressions, which are a powerful tool for finding patterns in a string and
performing operations like search and replace.

As an exercise, you’ll have a chance to apply these tools to a word game called Wordle.

8.1. A string is a sequence
A string is a sequence of characters. A character can be a letter (in almost any alphabet), a digit,
a punctuation mark, or white space.

Print to PDF

https://bookshop.org/a/98697/9781098155438
https://www.amazon.com/_/dp/1098155432?smid=ATVPDKIKX0DER&_encoding=UTF8&tag=oreilly20-20&_encoding=UTF8&tag=greenteapre01-20&linkCode=ur2&linkId=e2a529f94920295d27ec8a06e757dc7c&camp=1789&creative=9325

You can select a character from a string with the bracket operator. This example statement
selects character number 1 from fruit and assigns it to letter :

The expression in brackets is an index, so called because it indicates which character in the
sequence to select. But the result might not be what you expect.

The letter with index 1 is actually the second letter of the string. An index is an offset from the
beginning of the string, so the offset of the first letter is 0 .

You can think of 'b' as the 0th letter of 'banana' – pronounced “zero-eth”.

The index in brackets can be a variable.

Or an expression that contains variables and operators.

fruit = 'banana'
letter = fruit[1]

letter

'a'

fruit[0]

'b'

i = 1
fruit[i]

'a'

fruit[i+1]

'n'

But the value of the index has to be an integer – otherwise you get a TypeError .

As we saw in Chapter 1, we can use the built-in function len to get the length of a string.

To get the last letter of a string, you might be tempted to write this:

But that causes an IndexError because there is no letter in 'banana' with the index 6. Because
we started counting at 0 , the six letters are numbered 0 to 5 . To get the last character, you
have to subtract 1 from n :

But there’s an easier way. To get the last letter in a string, you can use a negative index, which
counts backward from the end.

fruit[1.5]

TypeError: string indices must be integers

n = len(fruit)
n

6

fruit[n]

IndexError: string index out of range

fruit[n-1]

'a'

fruit[-1]

'a'

The index -1 selects the last letter, -2 selects the second to last, and so on.

8.2. String slices
A segment of a string is called a slice. Selecting a slice is similar to selecting a character.

The operator [n:m] returns the part of the string from the n th character to the m th character,
including the first but excluding the second. This behavior is counterintuitive, but it might help
to imagine the indices pointing between the characters, as in this figure:

For example, the slice [3:6] selects the letters ana , which means that 6 is legal as part of a
slice, but not legal as an index.

If you omit the first index, the slice starts at the beginning of the string.

If you omit the second index, the slice goes to the end of the string:

fruit = 'banana'
fruit[0:3]

'ban'

fruit[:3]

'ban'

fruit[3:]

'ana'

If the first index is greater than or equal to the second, the result is an empty string,
represented by two quotation marks:

An empty string contains no characters and has length 0.

Continuing this example, what do you think fruit[:] means? Try it and see.

8.3. Strings are immutable
It is tempting to use the [] operator on the left side of an assignment, with the intention of
changing a character in a string, like this:

The result is a TypeError . In the error message, the “object” is the string and the “item” is the
character we tried to assign. For now, an object is the same thing as a value, but we will refine
that definition later.

The reason for this error is that strings are immutable, which means you can’t change an
existing string. The best you can do is create a new string that is a variation of the original.

This example concatenates a new first letter onto a slice of greeting . It has no effect on the
original string.

fruit[3:3]

''

greeting = 'Hello, world!'
greeting[0] = 'J'

TypeError: 'str' object does not support item assignment

new_greeting = 'J' + greeting[1:]
new_greeting

'Jello, world!'

8.4. String comparison
The relational operators work on strings. To see if two strings are equal, we can use the ==
operator.

Other relational operations are useful for putting words in alphabetical order:

Python does not handle uppercase and lowercase letters the same way people do. All the
uppercase letters come before all the lowercase letters, so:

greeting

'Hello, world!'

word = 'banana'

if word == 'banana':
 print('All right, banana.')

All right, banana.

def compare_word(word):
 if word < 'banana':
 print(word, 'comes before banana.')
 elif word > 'banana':
 print(word, 'comes after banana.')
 else:
 print('All right, banana.')

compare_word('apple')

apple comes before banana.

compare_word('Pineapple')

To solve this problem, we can convert strings to a standard format, such as all lowercase, before
performing the comparison. Keep that in mind if you have to defend yourself against a man
armed with a Pineapple.

8.5. String methods
Strings provide methods that perform a variety of useful operations. A method is similar to a
function – it takes arguments and returns a value – but the syntax is different. For example, the
method upper takes a string and returns a new string with all uppercase letters.

Instead of the function syntax upper(word) , it uses the method syntax word.upper() .

This use of the dot operator specifies the name of the method, upper , and the name of the
string to apply the method to, word . The empty parentheses indicate that this method takes no
arguments.

A method call is called an invocation; in this case, we would say that we are invoking upper on
word .

8.6. Writing files
String operators and methods are useful for reading and writing text files. As an example, we’ll
work with the text of Dracula, a novel by Bram Stoker that is available from Project Gutenberg
(https://www.gutenberg.org/ebooks/345).

I’ve downloaded the book in a plain text file called pg345.txt , which we can open for reading
like this:

Pineapple comes before banana.

word = 'banana'
new_word = word.upper()
new_word

'BANANA'

https://www.gutenberg.org/ebooks/345

In addition to the text of the book, this file contains a section at the beginning with information
about the book and a section at the end with information about the license. Before we process
the text, we can remove this extra material by finding the special lines at the beginning and end
that begin with '***' .

The following function takes a line and checks whether it is one of the special lines. It uses the
startswith method, which checks whether a string starts with a given sequence of characters.

We can use this function to loop through the lines in the file and print only the special lines.

Now let’s create a new file, called pg345_cleaned.txt , that contains only the text of the book. In
order to loop through the book again, we have to open it again for reading. And, to write a new
file, we can open it for writing.

open takes an optional parameters that specifies the “mode” – in this example, 'w' indicates
that we’re opening the file for writing. If the file doesn’t exist, it will be created; if it already
exists, the contents will be replaced.

As a first step, we’ll loop through the file until we find the first special line.

reader = open('pg345.txt')

def is_special_line(line):
 return line.startswith('*** ')

for line in reader:
 if is_special_line(line):
 print(line.strip())

*** START OF THE PROJECT GUTENBERG EBOOK DRACULA ***
*** END OF THE PROJECT GUTENBERG EBOOK DRACULA ***

reader = open('pg345.txt')
writer = open('pg345_cleaned.txt', 'w')

The break statement “breaks” out of the loop – that is, it causes the loop to end immediately,
before we get to the end of the file.

When the loop exits, line contains the special line that made the conditional true.

Because reader keeps track of where it is in the file, we can use a second loop to pick up where
we left off.

The following loop reads the rest of the file, one line at a time. When it finds the special line that
indicates the end of the text, it breaks out of the loop. Otherwise, it writes the line to the output
file.

When this loop exits, line contains the second special line.

At this point reader and writer are still open, which means we could keep reading lines from
reader or writing lines to writer . To indicate that we’re done, we can close both files by

invoking the close method.

for line in reader:
 if is_special_line(line):
 break

line

'*** START OF THE PROJECT GUTENBERG EBOOK DRACULA ***\n'

for line in reader:
 if is_special_line(line):
 break
 writer.write(line)

line

'*** END OF THE PROJECT GUTENBERG EBOOK DRACULA ***\n'

reader.close()
writer.close()

To check whether this process was successful, we can read the first few lines from the new file we
just created.

The endswith method checks whether a string ends with a given sequence of characters.

8.7. Find and replace
In the Icelandic translation of Dracula from 1901, the name of one of the characters was
changed from “Jonathan” to “Thomas”. To make this change in the English version, we can loop
through the book, use the replace method to replace one name with another, and write the
result to a new file.

We’ll start by counting the lines in the cleaned version of the file.

To see whether a line contains “Jonathan”, we can use the in operator, which checks whether
this sequence of characters appears anywhere in the line.

for line in open('pg345_cleaned.txt'):
 line = line.strip()
 if len(line) > 0:
 print(line)
 if line.endswith('Stoker'):
 break

DRACULA
by
Bram Stoker

total = 0
for line in open('pg345_cleaned.txt'):
 total += 1

total

15499

There are 199 lines that contain the name, but that’s not quite the total number of times it
appears, because it can appear more than once in a line. To get the total, we can use the count
method, which returns the number of times a sequence appears in a string.

Now we can replace 'Jonathan' with 'Thomas' like this:

The result is a new file called pg345_replaced.txt that contains a version of Dracula where
Jonathan Harker is called Thomas.

8.8. Regular expressions
If we know exactly what sequence of characters we’re looking for, we can use the in operator
to find it and the replace method to replace it. But there is another tool, called a regular
expression that can also perform these operations – and a lot more.

total = 0
for line in open('pg345_cleaned.txt'):
 if 'Jonathan' in line:
 total += 1

total

199

total = 0
for line in open('pg345_cleaned.txt'):
 total += line.count('Jonathan')

total

200

writer = open('pg345_replaced.txt', 'w')

for line in open('pg345_cleaned.txt'):
 line = line.replace('Jonathan', 'Thomas')
 writer.write(line)

To demonstrate, I’ll start with a simple example and we’ll work our way up. Suppose, again, that
we want to find all lines that contain a particular word. For a change, let’s look for references to
the titular character of the book, Count Dracula. Here’s a line that mentions him.

And here’s the pattern we’ll use to search.

A module called re provides functions related to regular expressions. We can import it like this
and use the search function to check whether the pattern appears in the text.

If the pattern appears in the text, search returns a Match object that contains the results of the
search. Among other information, it has a variable named string that contains the text that
was searched.

It also provides a method called group that returns the part of the text that matched the
pattern.

text = "I am Dracula; and I bid you welcome, Mr. Harker, to my house."

pattern = 'Dracula'

import re

result = re.search(pattern, text)
result

<re.Match object; span=(5, 12), match='Dracula'>

result.string

'I am Dracula; and I bid you welcome, Mr. Harker, to my house.'

result.group()

'Dracula'

And it provides a method called span that returns the index in the text where the pattern starts
and ends.

If the pattern doesn’t appear in the text, the return value from search is None .

So we can check whether the search was successful by checking whether the result is None .

Putting all that together, here’s a function that loops through the lines in the book until it finds
one that matches the given pattern, and returns the Match object.

We can use it to find the first mention of a character.

result.span()

(5, 12)

result = re.search('Count', text)
print(result)

None

result == None

True

def find_first(pattern):
 for line in open('pg345_cleaned.txt'):
 result = re.search(pattern, line)
 if result != None:
 return result

result = find_first('Harker')
result.string

'CHAPTER I. Jonathan Harker’s Journal\n'

For this example, we didn’t have to use regular expressions – we could have done the same
thing more easily with the in operator. But regular expressions can do things the in operator
cannot.

For example, if the pattern includes the vertical bar character, '|' , it can match either the
sequence on the left or the sequence on the right. Suppose we want to find the first mention of
Mina Murray in the book, but we are not sure whether she is referred to by first name or last. We
can use the following pattern, which matches either name.

We can use a pattern like this to see how many times a character is mentioned by either name.
Here’s a function that loops through the book and counts the number of lines that match the
given pattern.

Now let’s see how many times Mina is mentioned.

The special character '^' matches the beginning of a string, so we can find a line that starts
with a given pattern.

pattern = 'Mina|Murray'
result = find_first(pattern)
result.string

'CHAPTER V. Letters—Lucy and Mina\n'

def count_matches(pattern):
 count = 0
 for line in open('pg345_cleaned.txt'):
 result = re.search(pattern, line)
 if result != None:
 count += 1
 return count

count_matches('Mina|Murray')

229

result = find_first('^Dracula')
result.string

And the special character '$' matches the end of a string, so we can find a line that ends with a
given pattern (ignoring the newline at the end).

8.9. String substitution
Bram Stoker was born in Ireland, and when Dracula was published in 1897, he was living in
England. So we would expect him to use the British spelling of words like “centre” and “colour”.
To check, we can use the following pattern, which matches either “centre” or the American
spelling “center”.

In this pattern, the parentheses enclose the part of the pattern the vertical bar applies to. So this
pattern matches a sequence that starts with 'cent' and ends with either 'er' or 're' .

As expected, he used the British spelling.

We can also check whether he used the British spelling of “colour”. The following pattern uses
the special character '?' , which means that the previous character is optional.

'Dracula, jumping to his feet, said:--\n'

result = find_first('Harker$')
result.string

"by five o'clock, we must start off; for it won't do to leave Mrs. Harker\n"

pattern = 'cent(er|re)'

result = find_first(pattern)
result.string

'horseshoe of the Carpathians, as if it were the centre of some sort of\n'

pattern = 'colou?r'

This pattern matches either “colour” with the 'u' or “color” without it.

Again, as expected, he used the British spelling.

Now suppose we want to produce an edition of the book with American spellings. We can use
the sub function in the re module, which does string substitution.

The first argument is the pattern we want to find and replace, the second is what we want to
replace it with, and the third is the string we want to search. In the result, you can see that
“colour” has been replaced with “color”.

8.10. Debugging
When you are reading and writing files, debugging can be tricky. If you are working in a Jupyter
notebook, you can use shell commands to help. For example, to display the first few lines of a
file, you can use the command !head , like this:

The initial exclamation point, ! , indicates that this is a shell command, which is not part of
Python. To display the last few lines, you can use !tail .

result = find_first(pattern)
line = result.string
line

'undergarment with long double apron, front, and back, of coloured stuff\n'

re.sub(pattern, 'color', line)

'undergarment with long double apron, front, and back, of colored stuff\n'

!head pg345_cleaned.txt

!tail pg345_cleaned.txt

When you are working with large files, debugging can be difficult because there might be too
much output to check by hand. A good debugging strategy is to start with just part of the file,
get the program working, and then run it with the whole file.

To make a small file that contains part of a larger file, we can use !head again with the redirect
operator, > , which indicates that the results should be written to a file rather than displayed.

By default, !head reads the first 10 lines, but it takes an optional argument that indicates the
number of lines to read.

This shell command reads the first 100 lines from pg345_cleaned.txt and writes them to a file
called pg345_cleaned_100_lines.txt .

Note: The shell commands !head and !tail are not available on all operating systems. If they
don’t work for you, we can write similar functions in Python. See the first exercise at the end of
this chapter for suggestions.

8.11. Glossary
sequence: An ordered collection of values where each value is identified by an integer index.

character: An element of a string, including letters, numbers, and symbols.

index: An integer value used to select an item in a sequence, such as a character in a string. In
Python indices start from 0 .

slice: A part of a string specified by a range of indices.

empty string: A string that contains no characters and has length 0 .

object: Something a variable can refer to. An object has a type and a value.

immutable: If the elements of an object cannot be changed, the object is immutable.

!head pg345_cleaned.txt > pg345_cleaned_10_lines.txt

!head -100 pg345_cleaned.txt > pg345_cleaned_100_lines.txt

invocation: An expression – or part of an expression – that calls a method.

regular expression: A sequence of characters that defines a search pattern.

pattern: A rule that specifies the requirements a string has to meet to constitute a match.

string substitution: Replacement of a string, or part of a string, with another string.

shell command: A statement in a shell language, which is a language used to interact with an
operating system.

8.12. Exercises

8.12.1. Ask a virtual assistant
In this chapter, we only scratched the surface of what regular expressions can do. To get an idea
of what’s possible, ask a virtual assistant, “What are the most common special characters used in
Python regular expressions?”

You can also ask for a pattern that matches particular kinds of strings. For example, try asking:

Write a Python regular expression that matches a 10-digit phone number with hyphens.

Write a Python regular expression that matches a street address with a number and a street
name, followed by ST or AVE .

Write a Python regular expression that matches a full name with any common title like Mr
or Mrs followed by any number of names beginning with capital letters, possibly with
hyphens between some names.

And if you want to see something more complicated, try asking for a regular expression that
matches any legal URL.

This cell tells Jupyter to provide detailed debugging information
when a runtime error occurs. Run it before working on the exercises.

%xmode Verbose

Exception reporting mode: Verbose

A regular expression often has the letter r before the quotation mark, which indicates that it is
a “raw string”. For more information, ask a virtual assistant, “What is a raw string in Python?”

8.12.2. Exercise
See if you can write a function that does the same thing as the shell command !head . It should
take as arguments the name of a file to read, the number of lines to read, and the name of the
file to write the lines into. If the third parameter is None , it should display the lines rather than
write them to a file.

Consider asking a virtual assistant for help, but if you do, tell it not to use a with statement or a
try statement.

8.12.3. Exercise
“Wordle” is an online word game where the objective is to guess a five-letter word in six or fewer
attempts. Each attempt has to be recognized as a word, not including proper nouns. After each
attempt, you get information about which of the letters you guessed appear in the target word,
and which ones are in the correct position.

For example, suppose the target word is MOWER and you guess TRIED . You would learn that E
is in the word and in the correct position, R is in the word but not in the correct position, and
T , I , and D are not in the word.

As a different example, suppose you have guessed the words SPADE and CLERK , and you’ve
learned that E is in the word, but not in either of those positions, and none of the other letters
appear in the word. Of the words in the word list, how many could be the target word? Write a
function called check_word that takes a five-letter word and checks whether it could be the
target word, given these guesses.

You can use any of the functions from the previous chapter, like uses_any .

8.12.4. Exercise
Continuing the previous exercise, suppose you guess the work TOTEM and learn that the E is
still not in the right place, but the M is. How many words are left?

8.12.5. Exercise
The Count of Monte Cristo is a novel by Alexandre Dumas that is considered a classic.
Nevertheless, in the introduction of an English translation of the book, the writer Umberto Eco
confesses that he found the book to be “one of the most badly written novels of all time”.

In particular, he says it is “shameless in its repetition of the same adjective,” and mentions in
particular the number of times “its characters either shudder or turn pale.”

To see whether his objection is valid, let’s count the number number of lines that contain the
word pale in any form, including pale , pales , paled , and paleness , as well as the related
word pallor . Use a single regular expression that matches any of these words. As an additional
challenge, make sure that it doesn’t match any other words, like impale – you might want to
ask a virtual assistant for help.

Think Python: 3rd Edition

Copyright 2024 Allen B. Downey

Code license: MIT License

Text license: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

https://allendowney.github.io/ThinkPython/index.html
https://allendowney.com/
https://mit-license.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Lists
Contents

9.1. A list is a sequence

9.2. Lists are mutable

9.3. List slices

9.4. List operations

9.5. List methods

9.6. Lists and strings

9.7. Looping through a list

9.8. Sorting lists

9.9. Objects and values

9.10. Aliasing

9.11. List arguments

9.12. Making a word list

9.13. Debugging

9.14. Glossary

9.15. Exercises

You can order print and ebook versions of Think Python 3e from Bookshop.org and Amazon.

This chapter presents one of Python’s most useful built-in types, lists. You will also learn more
about objects and what can happen when multiple variables refer to the same object.

In the exercises at the end of the chapter, we’ll make a word list and use it to search for special
words like palindromes and anagrams.

https://bookshop.org/a/98697/9781098155438
https://www.amazon.com/_/dp/1098155432?smid=ATVPDKIKX0DER&_encoding=UTF8&tag=oreilly20-20&_encoding=UTF8&tag=greenteapre01-20&linkCode=ur2&linkId=e2a529f94920295d27ec8a06e757dc7c&camp=1789&creative=9325

9.1. A list is a sequence
Like a string, a list is a sequence of values. In a string, the values are characters; in a list, they
can be any type. The values in a list are called elements.

There are several ways to create a new list; the simplest is to enclose the elements in square
brackets ([and]). For example, here is a list of two integers.

And here’s a list of three strings.

The elements of a list don’t have to be the same type. The following list contains a string, a
float, an integer, and even another list.

A list within another list is nested.

A list that contains no elements is called an empty list; you can create one with empty brackets,
[] .

The len function returns the length of a list.

The length of an empty list is 0 .

The following figure shows the state diagram for cheeses , numbers and empty .

numbers = [42, 123]

cheeses = ['Cheddar', 'Edam', 'Gouda']

t = ['spam', 2.0, 5, [10, 20]]

empty = []

len(cheeses)

3

Lists are represented by boxes with the word “list” outside and the numbered elements of the
list inside.

9.2. Lists are mutable
To read an element of a list, we can use the bracket operator. The index of the first element is
0 .

Unlike strings, lists are mutable. When the bracket operator appears on the left side of an
assignment, it identifies the element of the list that will be assigned.

The second element of numbers , which used to be 123 , is now 17 .

List indices work the same way as string indices:

cheeses[0]

'Cheddar'

numbers[1] = 17
numbers

[42, 17]

Any integer expression can be used as an index.

If you try to read or write an element that does not exist, you get an IndexError .

If an index has a negative value, it counts backward from the end of the list.

The in operator works on lists – it checks whether a given element appears anywhere in the
list.

Although a list can contain another list, the nested list still counts as a single element – so in the
following list, there are only four elements.

And 10 is not considered to be an element of t because it is an element of a nested list, not
t .

'Edam' in cheeses

True

'Wensleydale' in cheeses

False

t = ['spam', 2.0, 5, [10, 20]]
len(t)

4

10 in t

False

9.3. List slices
The slice operator works on lists the same way it works on strings. The following example
selects the second and third elements from a list of four letters.

If you omit the first index, the slice starts at the beginning.

If you omit the second, the slice goes to the end.

So if you omit both, the slice is a copy of the whole list.

Another way to copy a list is to use the list function.

letters = ['a', 'b', 'c', 'd']
letters[1:3]

['b', 'c']

letters[:2]

['a', 'b']

letters[2:]

['c', 'd']

letters[:]

['a', 'b', 'c', 'd']

list(letters)

['a', 'b', 'c', 'd']

Because list is the name of a built-in function, you should avoid using it as a variable name.

9.4. List operations
The + operator concatenates lists.

The * operator repeats a list a given number of times.

No other mathematical operators work with lists, but the built-in function sum adds up the
elements.

And min and max find the smallest and largest elements.

t1 = [1, 2]
t2 = [3, 4]
t1 + t2

[1, 2, 3, 4]

['spam'] * 4

['spam', 'spam', 'spam', 'spam']

sum(t1)

3

min(t1)

1

max(t2)

9.5. List methods
Python provides methods that operate on lists. For example, append adds a new element to the
end of a list:

extend takes a list as an argument and appends all of the elements:

There are two methods that remove elements from a list. If you know the index of the element
you want, you can use pop .

The return value is the element that was removed. And we can confirm that the list has been
modified.

4

letters.append('e')
letters

['a', 'b', 'c', 'd', 'e']

letters.extend(['f', 'g'])
letters

['a', 'b', 'c', 'd', 'e', 'f', 'g']

t = ['a', 'b', 'c']
t.pop(1)

'b'

t

If you know the element you want to remove (but not the index), you can use remove :

The return value from remove is None . But we can confirm that the list has been modified.

If the element you ask for is not in the list, that’s a ValueError.

9.6. Lists and strings
A string is a sequence of characters and a list is a sequence of values, but a list of characters is
not the same as a string. To convert from a string to a list of characters, you can use the list
function.

The list function breaks a string into individual letters. If you want to break a string into
words, you can use the split method:

['a', 'c']

t = ['a', 'b', 'c']
t.remove('b')

t

['a', 'c']

t.remove('d')

ValueError: list.remove(x): x not in list

s = 'spam'
t = list(s)
t

['s', 'p', 'a', 'm']

An optional argument called a delimiter specifies which characters to use as word boundaries.
The following example uses a hyphen as a delimiter.

If you have a list of strings, you can concatenate them into a single string using join . join is
a string method, so you have to invoke it on the delimiter and pass the list as an argument.

In this case the delimiter is a space character, so join puts a space between words. To join
strings without spaces, you can use the empty string, '' , as a delimiter.

9.7. Looping through a list
You can use a for statement to loop through the elements of a list.

s = 'pining for the fjords'
t = s.split()
t

['pining', 'for', 'the', 'fjords']

s = 'ex-parrot'
t = s.split('-')
t

['ex', 'parrot']

delimiter = ' '
t = ['pining', 'for', 'the', 'fjords']
s = delimiter.join(t)
s

'pining for the fjords'

for cheese in cheeses:
 print(cheese)

For example, after using split to make a list of words, we can use for to loop through them.

A for loop over an empty list never runs the indented statements.

9.8. Sorting lists
Python provides a built-in function called sorted that sorts the elements of a list.

The original list is unchanged.

Cheddar
Edam
Gouda

s = 'pining for the fjords'

for word in s.split():
 print(word)

pining
for
the
fjords

for x in []:
 print('This never happens.')

scramble = ['c', 'a', 'b']
sorted(scramble)

['a', 'b', 'c']

scramble

['c', 'a', 'b']

sorted works with any kind of sequence, not just lists. So we can sort the letters in a string like
this.

The result is a list. To convert the list to a string, we can use join .

With an empty string as the delimiter, the elements of the list are joined with nothing between
them.

9.9. Objects and values
If we run these assignment statements:

We know that a and b both refer to a string, but we don’t know whether they refer to the
same string. There are two possible states, shown in the following figure.

sorted('letters')

['e', 'e', 'l', 'r', 's', 't', 't']

''.join(sorted('letters'))

'eelrstt'

a = 'banana'
b = 'banana'

In the diagram on the left, a and b refer to two different objects that have the same value. In
the diagram on the right, they refer to the same object. To check whether two variables refer to
the same object, you can use the is operator.

In this example, Python only created one string object, and both a and b refer to it. But when
you create two lists, you get two objects.

So the state diagram looks like this.

In this case we would say that the two lists are equivalent, because they have the same
elements, but not identical, because they are not the same object. If two objects are identical,
they are also equivalent, but if they are equivalent, they are not necessarily identical.

a = 'banana'
b = 'banana'
a is b

True

a = [1, 2, 3]
b = [1, 2, 3]
a is b

False

9.10. Aliasing
If a refers to an object and you assign b = a , then both variables refer to the same object.

So the state diagram looks like this.

The association of a variable with an object is called a reference. In this example, there are two
references to the same object.

An object with more than one reference has more than one name, so we say the object is
aliased. If the aliased object is mutable, changes made with one name affect the other. In this
example, if we change the object b refers to, we are also changing the object a refers to.

a = [1, 2, 3]
b = a
b is a

True

b[0] = 5
a

[5, 2, 3]

So we would say that a “sees” this change. Although this behavior can be useful, it is error-
prone. In general, it is safer to avoid aliasing when you are working with mutable objects.

For immutable objects like strings, aliasing is not as much of a problem. In this example:

It almost never makes a difference whether a and b refer to the same string or not.

9.11. List arguments
When you pass a list to a function, the function gets a reference to the list. If the function
modifies the list, the caller sees the change. For example, pop_first uses the list method pop
to remove the first element from a list.

We can use it like this.

The return value is the first element, which has been removed from the list – as we can see by
displaying the modified list.

In this example, the parameter lst and the variable letters are aliases for the same object,
so the state diagram looks like this:

a = 'banana'
b = 'banana'

def pop_first(lst):
 return lst.pop(0)

letters = ['a', 'b', 'c']
pop_first(letters)

'a'

letters

['b', 'c']

Passing a reference to an object as an argument to a function creates a form of aliasing. If the
function modifies the object, those changes persist after the function is done.

9.12. Making a word list
In the previous chapter, we read the file words.txt and searched for words with certain
properties, like using the letter e . But we read the entire file many times, which is not efficient.
It is better to read the file once and put the words in a list. The following loop shows how.

[2.04, 1.24, 1.06, 0.85]

word_list = []

for line in open('words.txt'):
 word = line.strip()
 word_list.append(word)

len(word_list)

113783

Before the loop, word_list is initialized with an empty list. Each time through the loop, the
append method adds a word to the end. When the loop is done, there are more than 113,000

words in the list.

Another way to do the same thing is to use read to read the entire file into a string.

The result is a single string with more than a million characters. We can use the split method
to split it into a list of words.

Now, to check whether a string appears in the list, we can use the in operator. For example,
'demotic' is in the list.

But 'contrafibularities' is not.

And I have to say, I’m anaspeptic about it.

string = open('words.txt').read()
len(string)

1016511

word_list = string.split()
len(word_list)

113783

'demotic' in word_list

True

'contrafibularities' in word_list

False

9.13. Debugging
Note that most list methods modify the argument and return None . This is the opposite of the
string methods, which return a new string and leave the original alone.

If you are used to writing string code like this:

It is tempting to write list code like this:

remove modifies the list and returns None , so next operation you perform with t is likely to
fail.

This error message takes some explaining. An attribute of an object is a variable or method
associated with it. In this case, the value of t is None , which is a NoneType object, which does
not have a attribute named remove , so the result is an AttributeError .

If you see an error message like this, you should look backward through the program and see if
you might have called a list method incorrectly.

9.14. Glossary
list: An object that contains a sequence of values.

word = 'plumage!'
word = word.strip('!')
word

'plumage'

t = [1, 2, 3]
t = t.remove(3) # WRONG!

t.remove(2)

AttributeError: 'NoneType' object has no attribute 'remove'

element: One of the values in a list or other sequence.

nested list: A list that is an element of another list.

delimiter: A character or string used to indicate where a string should be split.

equivalent: Having the same value.

identical: Being the same object (which implies equivalence).

reference: The association between a variable and its value.

aliased: If there is more than one variable that refers to an object, the object is aliased.

attribute: One of the named values associated with an object.

9.15. Exercises

9.15.1. Ask a virtual assistant
In this chapter, I used the words “contrafibularities” and “anaspeptic”, but they are not actually
English words. They were used in the British television show Black Adder, Season 3, Episode 2,
“Ink and Incapability”.

However, when I asked ChatGPT 3.5 (August 3, 2023 version) where those words came from, it
initially claimed they are from Monty Python, and later claimed they are from the Tom Stoppard
play Rosencrantz and Guildenstern Are Dead.

If you ask now, you might get different results. But this example is a reminder that virtual
assistants are not always accurate, so you should check whether the results are correct. As you
gain experience, you will get a sense of which questions virtual assistants can answer reliably. In
this example, a conventional web search can identify the source of these words quickly.

This cell tells Jupyter to provide detailed debugging information
when a runtime error occurs. Run it before working on the exercises.

%xmode Verbose

If you get stuck on any of the exercises in this chapter, consider asking a virtual assistant for
help. If you get a result that uses features we haven’t learned yet, you can assign the VA a “role”.

For example, before you ask a question try typing “Role: Basic Python Programming Instructor”.
After that, the responses you get should use only basic features. If you still see features we you
haven’t learned, you can follow up with “Can you write that using only basic Python features?”

9.15.2. Exercise
Two words are anagrams if you can rearrange the letters from one to spell the other. For
example, tops is an anagram of stop .

One way to check whether two words are anagrams is to sort the letters in both words. If the
lists of sorted letters are the same, the words are anagrams.

Write a function called is_anagram that takes two strings and returns True if they are
anagrams.

Using your function and the word list, find all the anagrams of takes .

9.15.3. Exercise
Python provides a built-in function called reversed that takes as an argument a sequence of
elements – like a list or string – and returns a reversed object that contains the elements in
reverse order.

If you want the reversed elements in a list, you can use the list function.

reversed('parrot')

<reversed at 0x7fe3de636b60>

list(reversed('parrot'))

['t', 'o', 'r', 'r', 'a', 'p']

Or if you want them in a string, you can use the join method.

So we can write a function that reverses a word like this.

A palindrome is a word that is spelled the same backward and forward, like “noon” and
“rotator”. Write a function called is_palindrome that takes a string argument and returns True
if it is a palindrome and False otherwise.

You can use the following loop to find all of the palindromes in the word list with at least 7
letters.

9.15.4. Exercise
Write a function called reverse_sentence that takes as an argument a string that contains any
number of words separated by spaces. It should return a new string that contains the same
words in reverse order. For example, if the argument is “Reverse this sentence”, the result
should be “Sentence this reverse”.

Hint: You can use the capitalize methods to capitalize the first word and convert the other
words to lowercase.

9.15.5. Exercise
Write a function called total_length that takes a list of strings and returns the total length of
the strings. The total length of the words in word_list should be .

''.join(reversed('parrot'))

'torrap'

def reverse_word(word):
 return ''.join(reversed(word))

for word in word_list:
 if len(word) >= 7 and is_palindrome(word):
 print(word)

902,728

Think Python: 3rd Edition

Copyright 2024 Allen B. Downey

Code license: MIT License

Text license: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

https://allendowney.github.io/ThinkPython/index.html
https://allendowney.com/
https://mit-license.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Dictionaries
Contents

10.1. A dictionary is a mapping

10.2. Creating dictionaries

10.3. The in operator

10.4. A collection of counters

10.5. Looping and dictionaries

10.6. Lists and dictionaries

10.7. Accumulating a list

10.8. Memos

10.9. Debugging

10.10. Glossary

10.11. Exercises

You can order print and ebook versions of Think Python 3e from Bookshop.org and Amazon.

This chapter presents a built-in type called a dictionary. It is one of Python’s best features – and
the building block of many efficient and elegant algorithms.

We’ll use dictionaries to compute the number of unique words in a book and the number of
times each one appears. And in the exercises, we’ll use dictionaries to solve word puzzles.

10.1. A dictionary is a mapping
A dictionary is like a list, but more general. In a list, the indices have to be integers; in a
dictionary they can be (almost) any type. For example, suppose we make a list of number words,
like this.

lst = ['zero', 'one', 'two']

Print to PDF

https://bookshop.org/a/98697/9781098155438
https://www.amazon.com/_/dp/1098155432?smid=ATVPDKIKX0DER&_encoding=UTF8&tag=oreilly20-20&_encoding=UTF8&tag=greenteapre01-20&linkCode=ur2&linkId=e2a529f94920295d27ec8a06e757dc7c&camp=1789&creative=9325

We can use an integer as an index to get the corresponding word.

But suppose we want to go in the other direction, and look up a word to get the corresponding
integer. We can’t do that with a list, but we can with a dictionary. We’ll start by creating an
empty dictionary and assigning it to numbers .

The curly braces, {} , represent an empty dictionary. To add items to the dictionary, we’ll use
square brackets.

This assignment adds to the dictionary an item, which represents the association of a key and a
value. In this example, the key is the string 'zero' and the value is the integer 0 . If we display
the dictionary, we see that it contains one item, which contains a key and a value separated by a
colon, : .

We can add more items like this.

lst[1]

'one'

numbers = {}
numbers

{}

numbers['zero'] = 0

numbers

{'zero': 0}

numbers['one'] = 1
numbers['two'] = 2
numbers

Now the dictionary contains three items.

To look up a key and get the corresponding value, we use the bracket operator.

If the key isn’t in the dictionary, we get a KeyError .

The len function works on dictionaries; it returns the number of items.

In mathematical language, a dictionary represents a mapping from keys to values, so you can
also say that each key “maps to” a value. In this example, each number word maps to the
corresponding integer.

The following figure shows the state diagram for numbers .

{'zero': 0, 'one': 1, 'two': 2}

numbers['two']

2

numbers['three']

KeyError: 'three'

len(numbers)

3

A dictionary is represented by a box with the word “dict” outside and the items inside. Each item
is represented by a key and an arrow pointing to a value. The quotation marks indicate that the
keys here are strings, not variable names.

10.2. Creating dictionaries
In the previous section we created an empty dictionary and added items one at a time using the
bracket operator. Instead, we could have created the dictionary all at once like this.

Each item consists of a key and a value separated by a colon. The items are separated by
commas and enclosed in curly braces.

Another way to create a dictionary is to use the dict function. We can make an empty
dictionary like this.

numbers = {'zero': 0, 'one': 1, 'two': 2}

empty = dict()
empty

And we can make a copy of a dictionary like this.

It is often useful to make a copy before performing operations that modify dictionaries.

10.3. The in operator
The in operator works on dictionaries, too; it tells you whether something appears as a key in
the dictionary.

The in operator does not check whether something appears as a value.

To see whether something appears as a value in a dictionary, you can use the method values ,
which returns a sequence of values, and then use the in operator.

{}

numbers_copy = dict(numbers)
numbers_copy

{'zero': 0, 'one': 1, 'two': 2}

'one' in numbers

True

1 in numbers

False

1 in numbers.values()

True

The items in a Python dictionary are stored in a hash table, which is a way of organizing data
that has a remarkable property: the in operator takes about the same amount of time no
matter how many items are in the dictionary. That makes it possible to write some remarkably
efficient algorithms.

To demonstrate, we’ll compare two algorithms for finding pairs of words where one is the
reverse of another – like stressed and desserts . We’ll start by reading the word list.

And here’s reverse_word from the previous chapter.

The following function loops through the words in the list. For each one, it reverses the letters
and then checks whether the reversed word is in the word list.

This function takes more than a minute to run. The problem is that the in operator checks the
words in the list one at a time, starting at the beginning. If it doesn’t find what it’s looking for –
which happens most of the time – it has to search all the way to the end.

And the in operator is inside the loop, so it runs once for each word. Since there are more than
100,000 words in the list, and for each one we check more than 100,000 words, the total number
of comparisons is the number of words squared – roughly – which is almost 13 billion.

word_list = open('words.txt').read().split()
len(word_list)

113783

def reverse_word(word):
 return ''.join(reversed(word))

def too_slow():
 count = 0
 for word in word_list:
 if reverse_word(word) in word_list:
 count += 1
 return count

len(word_list)**2

We can make this function much faster with a dictionary. The following loop creates a dictionary
that contains the words as keys.

The values in word_dict are all 1 , but they could be anything, because we won’t ever look
them up – we will only use this dictionary to check whether a key exists.

Now here’s a version of the previous function that replaces word_list with word_dict .

This function takes less than one hundredth of a second, so it’s about 10,000 times faster than
the previous version.

In general, the time it takes to find an element in a list is proportional to the length of the list.
The time it takes to find a key in a dictionary is almost constant – regardless of the number of
items.

10.4. A collection of counters
Suppose you are given a string and you want to count how many times each letter appears. A
dictionary is a good tool for this job. We’ll start with an empty dictionary.

As we loop through the letters in the string, suppose we see the letter 'a' for the first time. We
can add it to the dictionary like this.

12946571089

word_dict = {}
for word in word_list:
 word_dict[word] = 1

def much_faster():
 count = 0
 for word in word_dict:
 if reverse_word(word) in word_dict:
 count += 1
 return count

counter = {}

The value 1 indicates that we have seen the letter once. Later, if we see the same letter again,
we can increment the counter like this.

Now the value associated with 'a' is 2 , because we’ve seen the letter twice.

The following function uses these features to count the number of times each letter appears in a
string.

Each time through the loop, if letter is not in the dictionary, we create a new item with key
letter and value 1 . If letter is already in the dictionary we increment the value associated

with letter .

Here’s an example.

The items in counter show that the letter 'b' appears once, 'r' appears twice, and so on.

counter['a'] = 1

counter['a'] += 1

counter

{'a': 2}

def value_counts(string):
 counter = {}
 for letter in string:
 if letter not in counter:
 counter[letter] = 1
 else:
 counter[letter] += 1
 return counter

counter = value_counts('brontosaurus')
counter

{'b': 1, 'r': 2, 'o': 2, 'n': 1, 't': 1, 's': 2, 'a': 1, 'u': 2}

10.5. Looping and dictionaries
If you use a dictionary in a for statement, it traverses the keys of the dictionary. To
demonstrate, let’s make a dictionary that counts the letters in 'banana' .

The following loop prints the keys, which are the letters.

To print the values, we can use the values method.

To print the keys and values, we can loop through the keys and look up the corresponding
values.

counter = value_counts('banana')
counter

{'b': 1, 'a': 3, 'n': 2}

for key in counter:
 print(key)

b
a
n

for value in counter.values():
 print(value)

1
3
2

for key in counter:
 value = counter[key]
 print(key, value)

In the next chapter, we’ll see a more concise way to do the same thing.

10.6. Lists and dictionaries
You can put a list in a dictionary as a value. For example, here’s a dictionary that maps from the
number 4 to a list of four letters.

But you can’t put a list in a dictionary as a key. Here’s what happens if we try.

I mentioned earlier that dictionaries use hash tables, and that means that the keys have to be
hashable.

A hash is a function that takes a value (of any kind) and returns an integer. Dictionaries use
these integers, called hash values, to store and look up keys.

This system only works if a key is immutable, so its hash value is always the same. But if a key is
mutable, its hash value could change, and the dictionary would not work. That’s why keys have
to be hashable, and why mutable types like lists aren’t.

Since dictionaries are mutable, they can’t be used as keys, either. But they can be used as values.

b 1
a 3
n 2

d = {4: ['r', 'o', 'u', 's']}
d

{4: ['r', 'o', 'u', 's']}

letters = list('abcd')
d[letters] = 4

TypeError: unhashable type: 'list'

10.7. Accumulating a list
For many programming tasks, it is useful to loop through one list or dictionary while building
another. As an example, we’ll loop through the words in word_dict and make a list of
palindromes – that is, words that are spelled the same backward and forward, like “noon” and
“rotator”.

In the previous chapter, one of the exercises asked you to write a function that checks whether a
word is a palindrome. Here’s a solution that uses reverse_word .

If we loop through the words in word_dict , we can count the number of palindromes like this.

By now, this pattern is familiar.

Before the loop, count is initialized to 0 .

Inside the loop, if word is a palindrome, we increment count .

When the loop ends, count contains the total number of palindromes.

We can use a similar pattern to make a list of palindromes.

def is_palindrome(word):
 """Check if a word is a palindrome."""
 return reverse_word(word) == word

count = 0

for word in word_dict:
 if is_palindrome(word):
 count +=1

count

91

palindromes = []

for word in word_dict:
 if is_palindrome(word):
 palindromes.append(word)

palindromes[:10]

Here’s how it works:

Before the loop, palindromes is initialized with an empty list.

Inside the loop, if word is a palindrome, we append it to the end of palindromes .

When the loop ends, palindromes is a list of palindromes.

In this loop, palindromes is used as an accumulator, which is a variable that collects or
accumulates data during a computation.

Now suppose we want to select only palindromes with seven or more letters. We can loop
through palindromes and make a new list that contains only long palindromes.

Looping through a list like this, selecting some elements and omitting others, is called filtering.

10.8. Memos
If you ran the fibonacci function from Chapter 6, maybe you noticed that the bigger the
argument you provide, the longer the function takes to run.

['aa', 'aba', 'aga', 'aha', 'ala', 'alula', 'ama', 'ana', 'anna', 'ava']

long_palindromes = []

for word in palindromes:
 if len(word) >= 7:
 long_palindromes.append(word)

long_palindromes

['deified', 'halalah', 'reifier', 'repaper', 'reviver', 'rotator', 'sememes']

def fibonacci(n):
 if n == 0:
 return 0

 if n == 1:
 return 1

 return fibonacci(n-1) + fibonacci(n-2)

https://allendowney.github.io/ThinkPython/chap06.html#section-fibonacci

Furthermore, the run time increases quickly. To understand why, consider the following figure,
which shows the call graph for fibonacci with n=4 :

A call graph shows a set of function frames, with lines connecting each frame to the frames of
the functions it calls. At the top of the graph, fibonacci with n=4 calls fibonacci with n=3
and n=2 . In turn, fibonacci with n=3 calls fibonacci with n=2 and n=1 . And so on.

Count how many times fibonacci(0) and fibonacci(1) are called. This is an inefficient
solution to the problem, and it gets worse as the argument gets bigger.

One solution is to keep track of values that have already been computed by storing them in a
dictionary. A previously computed value that is stored for later use is called a memo. Here is a
“memoized” version of fibonacci :

known is a dictionary that keeps track of the Fibonacci numbers we already know It starts with
two items: 0 maps to 0 and 1 maps to 1 .

known = {0:0, 1:1}

def fibonacci_memo(n):
 if n in known:
 return known[n]

 res = fibonacci_memo(n-1) + fibonacci_memo(n-2)
 known[n] = res
 return res

Whenever fibonacci_memo is called, it checks known . If the result is already there, it can return
immediately. Otherwise it has to compute the new value, add it to the dictionary, and return it.

Comparing the two functions, fibonacci(40) takes about 30 seconds to run.
fibonacci_memo(40) takes about 30 microseconds, so it’s a million times faster. In the notebook

for this chapter, you’ll see where these measurements come from.

10.9. Debugging
As you work with bigger datasets it can become unwieldy to debug by printing and checking the
output by hand. Here are some suggestions for debugging large datasets:

1. Scale down the input: If possible, reduce the size of the dataset. For example if the program
reads a text file, start with just the first 10 lines, or with the smallest example you can find.
You can either edit the files themselves, or (better) modify the program so it reads only the
first n lines.

If there is an error, you can reduce n to the smallest value where the error occurs. As you
find and correct errors, you can increase n gradually.

2. Check summaries and types: Instead of printing and checking the entire dataset, consider
printing summaries of the data – for example, the number of items in a dictionary or the
total of a list of numbers.

A common cause of runtime errors is a value that is not the right type. For debugging this
kind of error, it is often enough to print the type of a value.

3. Write self-checks: Sometimes you can write code to check for errors automatically. For
example, if you are computing the average of a list of numbers, you could check that the
result is not greater than the largest element in the list or less than the smallest. This is
called a “sanity check” because it detects results that are “insane”.

Another kind of check compares the results of two different computations to see if they are
consistent. This is called a “consistency check”.

4. Format the output: Formatting debugging output can make it easier to spot an error. We
saw an example in Chapter 6. Another tool you might find useful is the pprint module,
which provides a pprint function that displays built-in types in a more human-readable
format (pprint stands for “pretty print”).

Again, time you spend building scaffolding can reduce the time you spend debugging.

https://allendowney.github.io/ThinkPython/chap06.html#section-debugging-factorial

10.10. Glossary
dictionary: An object that contains key-value pairs, also called items.

item: In a dictionary, another name for a key-value pair.

key: An object that appears in a dictionary as the first part of a key-value pair.

value: An object that appears in a dictionary as the second part of a key-value pair. This is more
specific than our previous use of the word “value”.

mapping: A relationship in which each element of one set corresponds to an element of another
set.

hash table: A collection of key-value pairs organized so that we can look up a key and find its
value efficiently.

hashable: Immutable types like integers, floats and strings are hashable. Mutable types like lists
and dictionaries are not.

hash function: A function that takes an object and computes an integer that is used to locate a
key in a hash table.

accumulator: A variable used in a loop to add up or accumulate a result.

filtering: Looping through a sequence and selecting or omitting elements.

call graph: A diagram that shows every frame created during the execution of a program, with
an arrow from each caller to each callee.

memo: A computed value stored to avoid unnecessary future computation.

10.11. Exercises
This cell tells Jupyter to provide detailed debugging information
when a runtime error occurs. Run it before working on the exercises.

%xmode Verbose

10.11.1. Ask an assistant
In this chapter, I said the keys in a dictionary have to be hashable and I gave a short explanation.
If you would like more details, ask a virtual assistant, “Why do keys in Python dictionaries have to
be hashable?”

In a previous section, we stored a list of words as keys in a dictionary so that we could use an
efficient version of the in operator. We could have done the same thing using a set , which is
another built-in data type. Ask a virtual assistant, “How do I make a Python set from a list of
strings and check whether a string is an element of the set?”

10.11.2. Exercise
Dictionaries have a method called get that takes a key and a default value. If the key appears in
the dictionary, get returns the corresponding value; otherwise it returns the default value. For
example, here’s a dictionary that maps from the letters in a string to the number of times they
appear.

If we look up a letter that appears in the word, get returns the number of times it appears.

If we look up a letter that doesn’t appear, we get the default value, 0 .

Use get to write a more concise version of value_counts . You should be able to eliminate the
if statement.

counter = value_counts('brontosaurus')

counter.get('b', 0)

1

counter.get('c', 0)

0

10.11.3. Exercise
What is the longest word you can think of where each letter appears only once? Let’s see if we
can find one longer than unpredictably .

Write a function named has_duplicates that takes a sequence – like a list or string – as a
parameter and returns True if there is any element that appears in the sequence more than
once.

10.11.4. Exercise
Write function called find_repeats that takes a dictionary that maps from each key to a
counter, like the result from value_counts . It should loop through the dictionary and return a
list of keys that have counts greater than 1 . You can use the following outline to get started.

10.11.5. Exercise
Suppose you run value_counts with two different words and save the results in two
dictionaries.

Each dictionary maps from a set of letters to the number of times they appear. Write a function
called add_counters that takes two dictionaries like this and returns a new dictionary that
contains all of the letters and the total number of times they appear in either word.

There are many ways to solve this problem. Once you have a working solution, consider asking a
virtual assistant for different solutions.

def find_repeats(counter):
 """Makes a list of keys with values greater than 1.

 counter: dictionary that maps from keys to counts

 returns: list of keys
 """
 return []

counter1 = value_counts('brontosaurus')
counter2 = value_counts('apatosaurus')

10.11.6. Exercise
A word is “interlocking” if we can split it into two words by taking alternating letters. For
example, “schooled” is an interlocking word because it can be split into “shoe” and “cold”.

To select alternating letters from a string, you can use a slice operator with three components
that indicate where to start, where to stop, and the “step size” between the letters.

In the following slice, the first component is 0 , so we start with the first letter. The second
component is None , which means we should go all the way to the end of the string. And the
third component is 2 , so there are two steps between the letters we select.

Instead of providing None as the second component, we can get the same effect by leaving it
out altogether. For example, the following slice selects alternating letters, starting with the
second letter.

Write a function called is_interlocking that takes a word as an argument and returns True if
it can be split into two interlocking words.

Think Python: 3rd Edition

word = 'schooled'
first = word[0:None:2]
first

'shoe'

second = word[1::2]
second

'cold'

for word in word_list:
 if len(word) >= 8 and is_interlocking(word):
 first = word[0::2]
 second = word[1::2]
 print(word, first, second)

https://allendowney.github.io/ThinkPython/index.html

Copyright 2024 Allen B. Downey

Code license: MIT License

Text license: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

https://allendowney.com/
https://mit-license.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Tuples
Contents

11.1. Tuples are like lists

11.2. But tuples are immutable

11.3. Tuple assignment

11.4. Tuples as return values

11.5. Argument packing

11.6. Zip

11.7. Comparing and Sorting

11.8. Inverting a dictionary

11.9. Debugging

11.10. Glossary

11.11. Exercises

You can order print and ebook versions of Think Python 3e from Bookshop.org and Amazon.

This chapter introduces one more built-in type, the tuple, and then shows how lists, dictionaries,
and tuples work together. It also presents tuple assignment and a useful feature for functions
with variable-length argument lists: the packing and unpacking operators.

In the exercises, we’ll use tuples, along with lists and dictionaries, to solve more word puzzles
and implement efficient algorithms.

One note: There are two ways to pronounce “tuple”. Some people say “tuh-ple”, which rhymes
with “supple”. But in the context of programming, most people say “too-ple”, which rhymes
with “quadruple”.

https://bookshop.org/a/98697/9781098155438
https://www.amazon.com/_/dp/1098155432?smid=ATVPDKIKX0DER&_encoding=UTF8&tag=oreilly20-20&_encoding=UTF8&tag=greenteapre01-20&linkCode=ur2&linkId=e2a529f94920295d27ec8a06e757dc7c&camp=1789&creative=9325

11.1. Tuples are like lists
A tuple is a sequence of values. The values can be any type, and they are indexed by integers,
so tuples are a lot like lists. The important difference is that tuples are immutable.

To create a tuple, you can write a comma-separated list of values.

Although it is not necessary, it is common to enclose tuples in parentheses.

To create a tuple with a single element, you have to include a final comma.

A single value in parentheses is not a tuple.

Another way to create a tuple is the built-in function tuple . With no argument, it creates an
empty tuple.

t = 'l', 'u', 'p', 'i', 'n'
type(t)

tuple

t = ('l', 'u', 'p', 'i', 'n')
type(t)

tuple

t1 = 'p',
type(t1)

tuple

t2 = ('p')
type(t2)

str

If the argument is a sequence (string, list or tuple), the result is a tuple with the elements of the
sequence.

Because tuple is the name of a built-in function, you should avoid using it as a variable name.

Most list operators also work with tuples. For example, the bracket operator indexes an
element.

And the slice operator selects a range of elements.

The + operator concatenates tuples.

t = tuple()
t

()

t = tuple('lupin')
t

('l', 'u', 'p', 'i', 'n')

t[0]

'l'

t[1:3]

('u', 'p')

tuple('lup') + ('i', 'n')

('l', 'u', 'p', 'i', 'n')

And the * operator duplicates a tuple a given number of times.

The sorted function works with tuples – but the result is a list, not a tuple.

The reversed function also works with tuples.

The result is a reversed object, which we can convert to a list or tuple.

Based on the examples so far, it might seem like tuples are the same as lists.

11.2. But tuples are immutable
If you try to modify a tuple with the bracket operator, you get a TypeError .

tuple('spam') * 2

('s', 'p', 'a', 'm', 's', 'p', 'a', 'm')

sorted(t)

['i', 'l', 'n', 'p', 'u']

reversed(t)

<reversed at 0x7f23a9a32b60>

tuple(reversed(t))

('n', 'i', 'p', 'u', 'l')

t[0] = 'L'

And tuples don’t have any of the methods that modify lists, like append and remove .

Recall that an “attribute” is a variable or method associated with an object – this error message
means that tuples don’t have a method named remove .

Because tuples are immutable, they are hashable, which means they can be used as keys in a
dictionary. For example, the following dictionary contains two tuples as keys that map to
integers.

We can look up a tuple in a dictionary like this:

Or if we have a variable that refers to a tuple, we can use it as a key.

Tuples can also appear as values in a dictionary.

TypeError: 'tuple' object does not support item assignment

t.remove('l')

AttributeError: 'tuple' object has no attribute 'remove'

d = {}
d[1, 2] = 3
d[3, 4] = 7

d[1, 2]

3

t = (3, 4)
d[t]

7

11.3. Tuple assignment
You can put a tuple of variables on the left side of an assignment, and a tuple of values on the
right.

The values are assigned to the variables from left to right – in this example, a gets the value 1
and b gets the value 2 . We can display the results like this:

More generally, if the left side of an assignment is a tuple, the right side can be any kind of
sequence – string, list or tuple. For example, to split an email address into a user name and a
domain, you could write:

The return value from split is a list with two elements – the first element is assigned to
username , the second to domain .

t = tuple('abc')
d = {'key': t}
d

{'key': ('a', 'b', 'c')}

a, b = 1, 2

a, b

(1, 2)

email = 'monty@python.org'
username, domain = email.split('@')

username, domain

('monty', 'python.org')

The number of variables on the left and the number of values on the right have to be the same
– otherwise you get a ValueError .

Tuple assignment is useful if you want to swap the values of two variables. With conventional
assignments, you have to use a temporary variable, like this:

That works, but with tuple assignment we can do the same thing without a temporary variable.

This works because all of the expressions on the right side are evaluated before any of the
assignments.

We can also use tuple assignment in a for statement. For example, to loop through the items
in a dictionary, we can use the items method.

Each time through the loop, item is assigned a tuple that contains a key and the
corresponding value.

We can write this loop more concisely, like this:

a, b = 1, 2, 3

ValueError: too many values to unpack (expected 2)

temp = a
a = b
b = temp

a, b = b, a

d = {'one': 1, 'two': 2}

for item in d.items():
 key, value = item
 print(key, '->', value)

one -> 1
two -> 2

Each time through the loop, a key and the corresponding value are assigned directly to key
and value .

11.4. Tuples as return values
Strictly speaking, a function can only return one value, but if the value is a tuple, the effect is the
same as returning multiple values. For example, if you want to divide two integers and compute
the quotient and remainder, it is inefficient to compute x//y and then x%y . It is better to
compute them both at the same time.

The built-in function divmod takes two arguments and returns a tuple of two values, the
quotient and remainder.

We can use tuple assignment to store the elements of the tuple in two variables.

for key, value in d.items():
 print(key, '->', value)

one -> 1
two -> 2

divmod(7, 3)

(2, 1)

quotient, remainder = divmod(7, 3)
quotient

2

remainder

1

Here is an example of a function that returns a tuple.

max and min are built-in functions that find the largest and smallest elements of a sequence.
min_max computes both and returns a tuple of two values.

We can assign the results to variables like this:

11.5. Argument packing
Functions can take a variable number of arguments. A parameter name that begins with the *
operator packs arguments into a tuple. For example, the following function takes any number
of arguments and computes their arithmetic mean – that is, their sum divided by the number of
arguments.

The parameter can have any name you like, but args is conventional. We can call the function
like this:

def min_max(t):
 return min(t), max(t)

min_max([2, 4, 1, 3])

(1, 4)

low, high = min_max([2, 4, 1, 3])
low, high

(1, 4)

def mean(*args):
 return sum(args) / len(args)

mean(1, 2, 3)

If you have a sequence of values and you want to pass them to a function as multiple
arguments, you can use the * operator to unpack the tuple. For example, divmod takes
exactly two arguments – if you pass a tuple as a parameter, you get an error.

Even though the tuple contains two elements, it counts as a single argument. But if you unpack
the tuple, it is treated as two arguments.

Packing and unpacking can be useful if you want to adapt the behavior of an existing function.
For example, this function takes any number of arguments, removes the lowest and highest,
and computes the mean of the rest.

First it uses min_max to find the lowest and highest elements. Then it converts args to a list so
it can use the remove method. Finally it unpacks the list so the elements are passed to mean as
separate arguments, rather than as a single list.

Here’s an example that shows the effect.

2.0

t = (7, 3)
divmod(t)

TypeError: divmod expected 2 arguments, got 1

divmod(*t)

(2, 1)

def trimmed_mean(*args):
 low, high = min_max(args)
 trimmed = list(args)
 trimmed.remove(low)
 trimmed.remove(high)
 return mean(*trimmed)

mean(1, 2, 3, 10)

This kind of “trimmed” mean is used in some sports with subjective judging – like diving and
gymnastics – to reduce the effect of a judge whose score deviates from the others.

11.6. Zip
Tuples are useful for looping through the elements of two sequences and performing
operations on corresponding elements. For example, suppose two teams play a series of seven
games, and we record their scores in two lists, one for each team.

Let’s see how many games each team won. We’ll use zip , which is a built-in function that takes
two or more sequences and returns a zip object, so-called because it pairs up the elements of
the sequences like the teeth of a zipper.

We can use the zip object to loop through the values in the sequences pairwise.

4.0

trimmed_mean(1, 2, 3, 10)

2.5

scores1 = [1, 2, 4, 5, 1, 5, 2]
scores2 = [5, 5, 2, 2, 5, 2, 3]

zip(scores1, scores2)

<zip at 0x7f23a9a7bdc0>

for pair in zip(scores1, scores2):
 print(pair)

Each time through the loop, pair gets assigned a tuple of scores. So we can assign the scores
to variables, and count the victories for the first team, like this:

Sadly, the first team won only three games and lost the series.

If you have two lists and you want a list of pairs, you can use zip and list .

The result is a list of tuples, so we can get the result of the last game like this:

If you have a list of keys and a list of values, you can use zip and dict to make a dictionary.
For example, here’s how we can make a dictionary that maps from each letter to its position in
the alphabet.

(1, 5)
(2, 5)
(4, 2)
(5, 2)
(1, 5)
(5, 2)
(2, 3)

wins = 0
for team1, team2 in zip(scores1, scores2):
 if team1 > team2:
 wins += 1

wins

3

t = list(zip(scores1, scores2))
t

[(1, 5), (2, 5), (4, 2), (5, 2), (1, 5), (5, 2), (2, 3)]

t[-1]

(2, 3)

Now we can look up a letter and get its index in the alphabet.

In this mapping, the index of 'a' is 0 and the index of 'z' is 25 .

If you need to loop through the elements of a sequence and their indices, you can use the built-
in function enumerate .

The result is an enumerate object that loops through a sequence of pairs, where each pair
contains an index (starting from 0) and an element from the given sequence.

11.7. Comparing and Sorting
The relational operators work with tuples and other sequences. For example, if you use the <
operator with tuples, it starts by comparing the first element from each sequence. If they are
equal, it goes on to the next pair of elements, and so on, until it finds a pair that differ.

letters = 'abcdefghijklmnopqrstuvwxyz'
numbers = range(len(letters))
letter_map = dict(zip(letters, numbers))

letter_map['a'], letter_map['z']

(0, 25)

enumerate('abc')

<enumerate at 0x7f23a808afc0>

for index, element in enumerate('abc'):
 print(index, element)

0 a
1 b
2 c

Subsequent elements are not considered – even if they are really big.

This way of comparing tuples is useful for sorting a list of tuples, or finding the minimum or
maximum. As an example, let’s find the most common letter in a word. In the previous chapter,
we wrote value_counts , which takes a string and returns a dictionary that maps from each
letter to the number of times it appears.

Here is the result for the string 'banana' .

With only three items, we can easily see that the most frequent letter is 'a' , which appears
three times. But if there were more items, it would be useful to sort them automatically.

We can get the items from counter like this.

(0, 1, 2) < (0, 3, 4)

True

(0, 1, 2000000) < (0, 3, 4)

True

def value_counts(string):
 counter = {}
 for letter in string:
 if letter not in counter:
 counter[letter] = 1
 else:
 counter[letter] += 1
 return counter

counter = value_counts('banana')
counter

{'b': 1, 'a': 3, 'n': 2}

The result is a dict_items object that behaves like a list of tuples, so we can sort it like this.

The default behavior is to use the first element from each tuple to sort the list, and use the
second element to break ties.

However, to find the items with the highest counts, we want to use the second element to sort
the list. We can do that by writing a function that takes a tuple and returns the second element.

Then we can pass that function to sorted as an optional argument called key , which indicates
that this function should be used to compute the sort key for each item.

The sort key determines the order of the items in the list. The letter with the lowest count
appears first, and the letter with the highest count appears last. So we can find the most
common letter like this.

items = counter.items()
items

dict_items([('b', 1), ('a', 3), ('n', 2)])

sorted(items)

[('a', 3), ('b', 1), ('n', 2)]

def second_element(t):
 return t[1]

sorted_items = sorted(items, key=second_element)
sorted_items

[('b', 1), ('n', 2), ('a', 3)]

sorted_items[-1]

If we only want the maximum, we don’t have to sort the list. We can use max , which also takes
key as an optional argument.

To find the letter with the lowest count, we could use min the same way.

11.8. Inverting a dictionary
Suppose you want to invert a dictionary so you can look up a value and get the corresponding
key. For example, if you have a word counter that maps from each word to the number of times
it appears, you could make a dictionary that maps from integers to the words that appear that
number of times.

But there’s a problem – the keys in a dictionary have to be unique, but the values don’t. For
example, in a word counter, there could be many words with the same count.

So one way to invert a dictionary is to create a new dictionary where the values are lists of keys
from the original. As an example, let’s count the letters in parrot .

If we invert this dictionary, the result should be {1: ['p', 'a', 'o', 't'], 2: ['r']} , which
indicates that the letters that appear once are 'p' , 'a' , 'o' , and 't' , and the letter than
appears twice is 'r' .

The following function takes a dictionary and returns its inverse as a new dictionary.

('a', 3)

max(items, key=second_element)

('a', 3)

d = value_counts('parrot')
d

{'p': 1, 'a': 1, 'r': 2, 'o': 1, 't': 1}

The for statement loops through the keys and values in d . If the value is not already in the
new dictionary, it is added and associated with a list that contains a single element. Otherwise it
is appended to the existing list.

We can test it like this:

And we get the result we expected.

This is the first example we’ve seen where the values in the dictionary are lists. We will see
more!

11.9. Debugging
Lists, dictionaries and tuples are data structures. In this chapter we are starting to see
compound data structures, like lists of tuples, or dictionaries that contain tuples as keys and lists
as values. Compound data structures are useful, but they are prone to errors caused when a
data structure has the wrong type, size, or structure. For example, if a function expects a list of
integers and you give it a plain old integer (not in a list), it probably won’t work.

To help debug these kinds of errors, I wrote a module called structshape that provides a
function, also called structshape , that takes any kind of data structure as an argument and
returns a string that summarizes its structure. You can download it from
https://raw.githubusercontent.com/AllenDowney/ThinkPython/v3/structshape.py.

We can import it like this.

def invert_dict(d):
 new = {}
 for key, value in d.items():
 if value not in new:
 new[value] = [key]
 else:
 new[value].append(key)
 return new

invert_dict(d)

{1: ['p', 'a', 'o', 't'], 2: ['r']}

https://raw.githubusercontent.com/AllenDowney/ThinkPython/v3/structshape.py

Here’s an example with a simple list.

Here’s a list of lists.

If the elements of the list are not the same type, structshape groups them by type.

Here’s a list of tuples.

And here’s a dictionary with three items that map integers to strings.

from structshape import structshape

t = [1, 2, 3]
structshape(t)

'list of 3 int'

t2 = [[1,2], [3,4], [5,6]]
structshape(t2)

'list of 3 list of 2 int'

t3 = [1, 2, 3, 4.0, '5', '6', [7], [8], 9]
structshape(t3)

'list of (3 int, float, 2 str, 2 list of int, int)'

s = 'abc'
lt = list(zip(t, s))
structshape(lt)

'list of 3 tuple of (int, str)'

If you are having trouble keeping track of your data structures, structshape can help.

11.10. Glossary
pack: Collect multiple arguments into a tuple.

unpack: Treat a tuple (or other sequence) as multiple arguments.

zip object: The result of calling the built-in function zip , can be used to loop through a
sequence of tuples.

enumerate object: The result of calling the built-in function enumerate , can be used to loop
through a sequence of tuples.

sort key: A value, or function that computes a value, used to sort the elements of a collection.

data structure: A collection of values, organized to perform certain operations efficiently.

11.11. Exercises

d = dict(lt)
structshape(d)

'dict of 3 int->str'

This cell tells Jupyter to provide detailed debugging information
when a runtime error occurs. Run it before working on the exercises.

%xmode Verbose

Exception reporting mode: Verbose

11.11.1. Ask a virtual assistant
The exercises in this chapter might be more difficult than exercises in previous chapters, so I
encourage you to get help from a virtual assistant. When you pose more difficult questions, you
might find that the answers are not correct on the first attempt, so this is a chance to practice
crafting good prompts and following up with good refinements.

One strategy you might consider is to break a big problems into pieces that can be solved with
simple functions. Ask the virtual assistant to write the functions and test them. Then, once they
are working, ask for a solution to the original problem.

For some of the exercises below, I make suggestions about which data structures and
algorithms to use. You might find these suggestions useful when you work on the problems, but
they are also good prompts to pass along to a virtual assistant.

11.11.2. Exercise
In this chapter I said that tuples can be used as keys in dictionaries because they are hashable,
and they are hashable because they are immutable. But that is not always true.

If a tuple contains a mutable value, like a list or a dictionary, the tuple is no longer hashable
because it contains elements that are not hashable. As an example, here’s a tuple that contains
two lists of integers.

Write a line of code that appends the value 6 to the end of the second list in t . If you display
t , the result should be ([1, 2, 3], [4, 5, 6]) .

Try to create a dictionary that maps from t to a string, and confirm that you get a TypeError .

list0 = [1, 2, 3]
list1 = [4, 5]

t = (list0, list1)
t

([1, 2, 3], [4, 5])

For more on this topic, ask a virtual assistant, “Are Python tuples always hashable?”

11.11.3. Exercise
In this chapter we made a dictionary that maps from each letter to its index in the alphabet.

For example, the index of 'a' is 0 .

To go in the other direction, we can use list indexing. For example, the letter at index 1 is 'b' .

We can use letter_map and letters to encode and decode words using a Caesar cipher.

A Caesar cipher is a weak form of encryption that involves shifting each letter by a fixed number
of places in the alphabet, wrapping around to the beginning if necessary. For example, 'a'

d = {t: 'this tuple contains two lists'}

TypeError Traceback (most recent call last)
Cell In[77], line 1
----> 1 d = {t: 'this tuple contains two lists'}
 d = {1: 'a', 2: 'b', 3: 'c'}
 t = ([1, 2, 3], [4, 5, 6])

TypeError: unhashable type: 'list'

letters = 'abcdefghijklmnopqrstuvwxyz'
numbers = range(len(letters))
letter_map = dict(zip(letters, numbers))

letter_map['a']

0

letters[1]

'b'

shifted by 2 is 'c' and 'z' shifted by 1 is 'a' .

Write a function called shift_word that takes as parameters a string and an integer, and
returns a new string that contains the letters from the string shifted by the given number of
places.

To test your function, confirm that “cheer” shifted by 7 is “jolly” and “melon” shifted by 16 is
“cubed”.

Hints: Use the modulus operator to wrap around from 'z' back to 'a' . Loop through the
letters of the word, shift each one, and append the result to a list of letters. Then use join to
concatenate the letters into a string.

11.11.4. Exercise
Write a function called most_frequent_letters that takes a string and prints the letters in
decreasing order of frequency.

To get the items in decreasing order, you can use reversed along with sorted or you can pass
reverse=True as a keyword parameter to sorted .

11.11.5. Exercise
In a previous exercise, we tested whether two strings are anagrams by sorting the letters in both
words and checking whether the sorted letters are the same. Now let’s make the problem a
little more challenging.

We’ll write a program that takes a list of words and prints all the sets of words that are
anagrams. Here is an example of what the output might look like:

Hint: For each word in the word list, sort the letters and join them back into a string. Make a
dictionary that maps from this sorted string to a list of words that are anagrams of it.

['deltas', 'desalt', 'lasted', 'salted', 'slated', 'staled']
['retainers', 'ternaries']
['generating', 'greatening']
['resmelts', 'smelters', 'termless']

11.11.6. Exercise
Write a function called word_distance that takes two words with the same length and returns
the number of places where the two words differ.

Hint: Use zip to loop through the corresponding letters of the words.

11.11.7. Exercise
“Metathesis” is the transposition of letters in a word. Two words form a “metathesis pair” if you
can transform one into the other by swapping two letters, like converse and conserve . Write a
program that finds all of the metathesis pairs in the word list.

Hint: The words in a metathesis pair must be anagrams of each other.

Credit: This exercise is inspired by an example at http://puzzlers.org.

Think Python: 3rd Edition

Copyright 2024 Allen B. Downey

Code license: MIT License

Text license: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

http://puzzlers.org/
https://allendowney.github.io/ThinkPython/index.html
https://allendowney.com/
https://mit-license.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Text Analysis and Generation
Contents

12.1. Unique words

12.2. Punctuation

12.3. Word frequencies

12.4. Optional parameters

12.5. Dictionary subtraction

12.6. Random numbers

12.7. Bigrams

12.8. Markov analysis

12.9. Generating text

12.10. Debugging

12.11. Glossary

12.12. Exercises

You can order print and ebook versions of Think Python 3e from Bookshop.org and Amazon.

At this point we have covered Python’s core data structures – lists, dictionaries, and tuples – and
some algorithms that use them. In this chapter, we’ll use them to explore text analysis and
Markov generation:

Text analysis is a way to describe the statistical relationships between the words in a
document, like the probability that one word is followed by another, and

Markov generation is a way to generate new text with words and phrases similar to the
original text.

These algorithms are similar to parts of a Large Language Model (LLM), which is the key
component of a chatbot.

https://bookshop.org/a/98697/9781098155438
https://www.amazon.com/_/dp/1098155432?smid=ATVPDKIKX0DER&_encoding=UTF8&tag=oreilly20-20&_encoding=UTF8&tag=greenteapre01-20&linkCode=ur2&linkId=e2a529f94920295d27ec8a06e757dc7c&camp=1789&creative=9325

We’ll start by counting the number of times each word appears in a book. Then we’ll look at
pairs of words, and make a list of the words that can follow each word. We’ll make a simple
version of a Markov generator, and as an exercise, you’ll have a chance to make a more general
version.

12.1. Unique words
As a first step toward text analysis, let’s read a book – The Strange Case Of Dr. Jekyll And Mr.
Hyde by Robert Louis Stevenson – and count the number of unique words. Instructions for
downloading the book are in the notebook for this chapter.

We’ll use a for loop to read lines from the file and split to divide the lines into words. Then,
to keep track of unique words, we’ll store each word as a key in a dictionary.

The length of the dictionary is the number of unique words – about 6000 by this way of
counting. But if we inspect them, we’ll see that some are not valid words.

For example, let’s look at the longest words in unique_words . We can use sorted to sort the
words, passing the len function as a keyword argument so the words are sorted by length.

filename = 'dr_jekyll.txt'

unique_words = {}
for line in open(filename):
 seq = line.split()
 for word in seq:
 unique_words[word] = 1

len(unique_words)

6040

sorted(unique_words, key=len)[-5:]

The slice index, [-5:] , selects the last 5 elements of the sorted list, which are the longest
words.

The list includes some legitimately long words, like “circumscription”, and some hyphenated
words, like “chocolate-coloured”. But some of the longest “words” are actually two words
separated by a dash. And other words include punctuation like periods, exclamation points, and
quotation marks.

So, before we move on, let’s deal with dashes and other punctuation.

12.2. Punctuation
To identify the words in the text, we need to deal with two issues:

When a dash appears in a line, we should replace it with a space – then when we use
split , the words will be separated.

After splitting the words, we can use strip to remove punctuation.

To handle the first issue, we can use the following function, which takes a string, replaces dashes
with spaces, splits the string, and returns the resulting list.

Notice that split_line only replaces dashes, not hyphens. Here’s an example.

['chocolate-coloured',
 'superiors—behold!”',
 'coolness—frightened',
 'gentleman—something',
 'pocket-handkerchief.']

def split_line(line):
 return line.replace('—', ' ').split()

split_line('coolness—frightened')

['coolness', 'frightened']

Now, to remove punctuation from the beginning and end of each word, we can use strip , but
we need a list of characters that are considered punctuation.

Characters in Python strings are in Unicode, which is an international standard used to
represent letters in nearly every alphabet, numbers, symbols, punctuation marks, and more. The
unicodedata module provides a category function we can use to tell which characters are

punctuation. Given a letter, it returns a string with information about what category the letter is
in.

The category string of 'A' is 'Lu' – the 'L' means it is a letter and the 'u' means it is
uppercase.

The category string of '.' is 'Po' – the 'P' means it is punctuation and the 'o' means its
subcategory is “other”.

We can find the punctuation marks in the book by checking for characters with categories that
begin with 'P' . The following loop stores the unique punctuation marks in a dictionary.

To make a list of punctuation marks, we can join the keys of the dictionary into a string.

import unicodedata

unicodedata.category('A')

'Lu'

unicodedata.category('.')

'Po'

punc_marks = {}
for line in open(filename):
 for char in line:
 category = unicodedata.category(char)
 if category.startswith('P'):
 punc_marks[char] = 1

Now that we know which characters in the book are punctuation, we can write a function that
takes a word, strips punctuation from the beginning and end, and converts it to lower case.

Here’s an example.

Because strip removes characters from the beginning and end, it leaves hyphenated words
alone.

Now here’s a loop that uses split_line and clean_word to identify the unique words in the
book.

punctuation = ''.join(punc_marks)
print(punctuation)

.’;,-“”:?—‘!()_

def clean_word(word):
 return word.strip(punctuation).lower()

clean_word('“Behold!”')

'behold'

clean_word('pocket-handkerchief')

'pocket-handkerchief'

unique_words2 = {}
for line in open(filename):
 for word in split_line(line):
 word = clean_word(word)
 unique_words2[word] = 1

len(unique_words2)

With this stricter definition of what a word is, there are about 4000 unique words. And we can
confirm that the list of longest words has been cleaned up.

Now let’s see how many times each word is used.

12.3. Word frequencies
The following loop computes the frequency of each unique word.

The first time we see a word, we initialize its frequency to 1 . If we see the same word again
later, we increment its frequency.

To see which words appear most often, we can use items to get the key-value pairs from
word_counter , and sort them by the second element of the pair, which is the frequency. First

we’ll define a function that selects the second element.

4005

sorted(unique_words2, key=len)[-5:]

['circumscription',
 'unimpressionable',
 'fellow-creatures',
 'chocolate-coloured',
 'pocket-handkerchief']

word_counter = {}
for line in open(filename):
 for word in split_line(line):
 word = clean_word(word)
 if word not in word_counter:
 word_counter[word] = 1
 else:
 word_counter[word] += 1

def second_element(t):
 return t[1]

Now we can use sorted with two keyword arguments:

key=second_element means the items will be sorted according to the frequencies of the
words.

reverse=True means they items will be sorted in reverse order, with the most frequent
words first.

Here are the five most frequent words.

In the next section, we’ll encapsulate this loop in a function. And we’ll use it to demonstrate a
new feature – optional parameters.

12.4. Optional parameters
We’ve used built-in functions that take optional parameters. For example, round takes an
optional parameters called ndigits that indicates how many decimal places to keep.

But it’s not just built-in functions – we can write functions with optional parameters, too. For
example, the following function takes two parameters, word_counter and num .

items = sorted(word_counter.items(), key=second_element, reverse=True)

for word, freq in items[:5]:
 print(freq, word, sep='\t')

1614 the
972 and
941 of
640 to
640 i

round(3.141592653589793, ndigits=3)

3.142

The second parameter looks like an assignment statement, but it’s not – it’s an optional
parameter.

If you call this function with one argument, num gets the default value, which is 5 .

If you call this function with two arguments, the second argument gets assigned to num instead
of the default value.

In that case, we would say the optional argument overrides the default value.

If a function has both required and optional parameters, all of the required parameters have to
come first, followed by the optional ones.

12.5. Dictionary subtraction
Suppose we want to spell-check a book – that is, find a list of words that might be misspelled.
One way to do that is to find words in the book that don’t appear in a list of valid words. In

def print_most_common(word_counter, num=5):
 items = sorted(word_counter.items(), key=second_element, reverse=True)

 for word, freq in items[:num]:
 print(freq, word, sep='\t')

print_most_common(word_counter)

1614 the
972 and
941 of
640 to
640 i

print_most_common(word_counter, 3)

1614 the
972 and
941 of

previous chapters, we’ve used a list of words that are considered valid in word games like
Scrabble. Now we’ll use this list to spell-check Robert Louis Stevenson.

We can think of this problem as set subtraction – that is, we want to find all the words from one
set (the words in the book) that are not in the other (the words in the list).

As we’ve done before, we can read the contents of words.txt and split it into a list of strings.

The we’ll store the words as keys in a dictionary so we can use the in operator to check quickly
whether a word is valid.

Now, to identify words that appear in the book but not in the word list, we’ll use subtract ,
which takes two dictionaries as parameters and returns a new dictionary that contains all the
keys from one that are not in the other.

Here’s how we use it.

To get a sample of words that might be misspelled, we can print the most common words in
diff .

word_list = open('words.txt').read().split()

valid_words = {}
for word in word_list:
 valid_words[word] = 1

def subtract(d1, d2):
 res = {}
 for key in d1:
 if key not in d2:
 res[key] = d1[key]
 return res

diff = subtract(word_counter, valid_words)

print_most_common(diff)

The most common “misspelled” words are mostly names and a few single-letter words (Mr.
Utterson is Dr. Jekyll’s friend and lawyer).

If we select words that only appear once, they are more likely to be actual misspellings. We can
do that by looping through the items and making a list of words with frequency 1 .

Here are the last few elements of the list.

Most of them are valid words that are not in the word list. But 'reindue' appears to be a
misspelling of 'reinduce' , so at least we found one legitimate error.

12.6. Random numbers
As a step toward Markov text generation, next we’ll choose a random sequence of words from
word_counter . But first let’s talk about randomness.

Given the same inputs, most computer programs are deterministic, which means they generate
the same outputs every time. Determinism is usually a good thing, since we expect the same
calculation to yield the same result. For some applications, though, we want the computer to be
unpredictable. Games are one example, but there are more.

Making a program truly nondeterministic turns out to be difficult, but there are ways to fake it.
One is to use algorithms that generate pseudorandom numbers. Pseudorandom numbers are

640 i
628 a
128 utterson
124 mr
98 hyde

singletons = []
for word, freq in diff.items():
 if freq == 1:
 singletons.append(word)

singletons[-5:]

['gesticulated', 'abjection', 'circumscription', 'reindue', 'fearstruck']

not truly random because they are generated by a deterministic computation, but just by
looking at the numbers it is all but impossible to distinguish them from random.

The random module provides functions that generate pseudorandom numbers – which I will
simply call “random” from here on. We can import it like this.

The random module provides a function called choice that chooses an element from a list at
random, with every element having the same probability of being chosen.

If you call the function again, you might get the same element again, or a different one.

In the long run, we expect to get every element about the same number of times.

If you use choice with a dictionary, you get a KeyError .

To choose a random key, you have to put the keys in a list and then call choice .

import random

t = [1, 2, 3]
random.choice(t)

1

random.choice(t)

2

random.choice(word_counter)

KeyError: 422

words = list(word_counter)
random.choice(words)

If we generate a random sequence of words, it doesn’t make much sense.

Part of the problem is that we are not taking into account that some words are more common
than others. The results will be better if we choose words with different “weights”, so that some
are chosen more often than others.

If we use the values from word_counter as weights, each word is chosen with a probability that
depends on its frequency.

The random module provides another function called choices that takes weights as an
optional argument.

And it takes another optional argument, k , that specifies the number of words to select.

The result is a list of strings that we can join into something that’s looks more like a sentence.

'posture'

for i in range(6):
 word = random.choice(words)
 print(word, end=' ')

ill-contained written apocryphal nor busy spoke

weights = word_counter.values()

random.choices(words, weights=weights)

['than']

random_words = random.choices(words, weights=weights, k=6)
random_words

['reach', 'streets', 'edward', 'a', 'said', 'to']

If you choose words from the book at random, you get a sense of the vocabulary, but a series of
random words seldom makes sense because there is no relationship between successive words.
For example, in a real sentence you expect an article like “the” to be followed by an adjective or
a noun, and probably not a verb or adverb. So the next step is to look at these relationships
between words.

12.7. Bigrams
Instead of looking at one word at a time, now we’ll look at sequences of two words, which are
called bigrams. A sequence of three words is called a trigram, and a sequence with some
unspecified number of words is called an n-gram.

Let’s write a program that finds all of the bigrams in the book and the number of times each
one appears. To store the results, we’ll use a dictionary where

The keys are tuples of strings that represent bigrams, and

The values are integers that represent frequencies.

Let’s call it bigram_counter .

The following function takes a list of two strings as a parameter. First it makes a tuple of the two
strings, which can be used as a key in a dictionary. Then it adds the key to bigram_counter , if it
doesn’t exist, or increments the frequency if it does.

' '.join(random_words)

'reach streets edward a said to'

bigram_counter = {}

def count_bigram(bigram):
 key = tuple(bigram)
 if key not in bigram_counter:
 bigram_counter[key] = 1
 else:
 bigram_counter[key] += 1

As we go through the book, we have to keep track of each pair of consecutive words. So if we
see the sequence “man is not truly one”, we would add the bigrams “man is”, “is not”, “not
truly”, and so on.

To keep track of these bigrams, we’ll use a list called window , because it is like a window that
slides over the pages of the book, showing only two words at a time. Initially, window is empty.

We’ll use the following function to process the words one at a time.

The first time this function is called, it appends the given word to window . Since there is only
one word in the window, we don’t have a bigram yet, so the function ends.

The second time it’s called – and every time thereafter – it appends a second word to window .
Since there are two words in the window, it calls count_bigram to keep track of how many
times each bigram appears. Then it uses pop to remove the first word from the window.

The following program loops through the words in the book and processes them one at a time.

The result is a dictionary that maps from each bigram to the number of times it appears. We can
use print_most_common to see the most common bigrams.

window = []

def process_word(word):
 window.append(word)

 if len(window) == 2:
 count_bigram(window)
 window.pop(0)

for line in open(filename):
 for word in split_line(line):
 word = clean_word(word)
 process_word(word)

print_most_common(bigram_counter)

Looking at these results, we can get a sense of which pairs of words are most likely to appear
together. We can also use the results to generate random text, like this.

bigrams is a list of the bigrams that appear in the books. weights is a list of their frequencies,
so random_bigrams is a sample where the probability a bigram is selected is proportional to its
frequency.

Here are the results.

This way of generating text is better than choosing random words, but still doesn’t make a lot
of sense.

12.8. Markov analysis
We can do better with Markov chain text analysis, which computes, for each word in a text, the
list of words that come next. As an example, we’ll analyze these lyrics from the Monty Python
song Eric, the Half a Bee:

178 ('of', 'the')
139 ('in', 'the')
94 ('it', 'was')
80 ('and', 'the')
73 ('to', 'the')

bigrams = list(bigram_counter)
weights = bigram_counter.values()
random_bigrams = random.choices(bigrams, weights=weights, k=6)

for pair in random_bigrams:
 print(' '.join(pair), end=' ')

to suggest this preface to detain fact is above all the laboratory

To store the results, we’ll use a dictionary that maps from each word to the list of words that
follow it.

As an example, let’s start with the first two words of the song.

If the first word is not in successor_map , we have to add a new item that maps from the first
word to a list containing the second word.

If the first word is already in the dictionary, we can look it up to get the list of successors we’ve
seen so far, and append the new one.

The following function encapsulates these steps.

song = """
Half a bee, philosophically,
Must, ipso facto, half not be.
But half the bee has got to be
Vis a vis, its entity. D'you see?
"""

successor_map = {}

first = 'half'
second = 'a'

successor_map[first] = [second]
successor_map

{'half': ['a']}

first = 'half'
second = 'not'

successor_map[first].append(second)
successor_map

{'half': ['a', 'not']}

If the same bigram appears more that once, the second word is added to the list more than
once. In this way, successor_map keeps track of how many times each successor appears.

As we did in the previous section, we’ll use a list called window to store pairs of consecutive
words. And we’ll use the following function to process the words one at a time.

Here’s how we use it to process the words in the song.

And here are the results.

def add_bigram(bigram):
 first, second = bigram

 if first not in successor_map:
 successor_map[first] = [second]
 else:
 successor_map[first].append(second)

def process_word_bigram(word):
 window.append(word)

 if len(window) == 2:
 add_bigram(window)
 window.pop(0)

successor_map = {}
window = []

for word in song.split():
 word = clean_word(word)
 process_word_bigram(word)

successor_map

The word 'half' can be followed by 'a' , 'not' , or 'the' . The word 'a' can be followed
by 'bee' or 'vis' . Most of the other words appear only once, so they are followed by only a
single word.

Now let’s analyze the book.

We can look up any word and find the words that can follow it.

In this list of successors, notice that the word 'to' appears three times – the other successors
only appear once.

{'half': ['a', 'not', 'the'],
 'a': ['bee', 'vis'],
 'bee': ['philosophically', 'has'],
 'philosophically': ['must'],
 'must': ['ipso'],
 'ipso': ['facto'],
 'facto': ['half'],
 'not': ['be'],
 'be': ['but', 'vis'],
 'but': ['half'],
 'the': ['bee'],
 'has': ['got'],
 'got': ['to'],
 'to': ['be'],
 'vis': ['a', 'its'],
 'its': ['entity'],
 'entity': ["d'you"],
 "d'you": ['see']}

successor_map = {}
window = []

for line in open(filename):
 for word in split_line(line):
 word = clean_word(word)
 process_word_bigram(word)

successor_map['going']

['east', 'in', 'to', 'to', 'up', 'to', 'of']

12.9. Generating text
We can use the results from the previous section to generate new text with the same
relationships between consecutive words as in the original. Here’s how it works:

Starting with any word that appears in the text, we look up its possible successors and
choose one at random.

Then, using the chosen word, we look up its possible successors, and choose one at
random.

We can repeat this process to generate as many words as we want. As an example, let’s start
with the word 'although' . Here are the words that can follow it.

We can use choice to choose from the list with equal probability.

If the same word appears more than once in the list, it is more likely to be selected.

Repeating these steps, we can use the following loop to generate a longer series.

word = 'although'
successors = successor_map[word]
successors

['i', 'a', 'it', 'the', 'we', 'they', 'i']

word = random.choice(successors)
word

'i'

for i in range(10):
 successors = successor_map[word]
 word = random.choice(successors)
 print(word, end=' ')

continue to hesitate and swallowed the smile withered from that

The result sounds more like a real sentence, but it still doesn’t make much sense.

We can do better using more than one word as a key in successor_map . For example, we can
make a dictionary that maps from each bigram – or trigram – to the list of words that come
next. As an exercise, you’ll have a chance to implement this analysis and see what the results
look like.

12.10. Debugging
At this point we are writing more substantial programs, and you might find that you are
spending more time debugging. If you are stuck on a difficult bug, here are a few things to try:

Reading: Examine your code, read it back to yourself, and check that it says what you
meant to say.

Running: Experiment by making changes and running different versions. Often if you
display the right thing at the right place in the program, the problem becomes obvious, but
sometimes you have to build scaffolding.

Ruminating: Take some time to think! What kind of error is it: syntax, runtime, or semantic?
What information can you get from the error messages, or from the output of the
program? What kind of error could cause the problem you’re seeing? What did you change
last, before the problem appeared?

Rubberducking: If you explain the problem to someone else, you sometimes find the
answer before you finish asking the question. Often you don’t need the other person; you
could just talk to a rubber duck. And that’s the origin of the well-known strategy called
rubber duck debugging. I am not making this up – see
https://en.wikipedia.org/wiki/Rubber_duck_debugging.

Retreating: At some point, the best thing to do is back up – undoing recent changes – until
you get to a program that works. Then you can start rebuilding.

Resting: If you give your brain a break, sometime it will find the problem for you.

Beginning programmers sometimes get stuck on one of these activities and forget the others.
Each activity comes with its own failure mode.

For example, reading your code works if the problem is a typographical error, but not if the
problem is a conceptual misunderstanding. If you don’t understand what your program does,
you can read it 100 times and never see the error, because the error is in your head.

https://en.wikipedia.org/wiki/Rubber_duck_debugging

Running experiments can work, especially if you run small, simple tests. But if you run
experiments without thinking or reading your code, it can take a long time to figure out what’s
happening.

You have to take time to think. Debugging is like an experimental science. You should have at
least one hypothesis about what the problem is. If there are two or more possibilities, try to
think of a test that would eliminate one of them.

But even the best debugging techniques will fail if there are too many errors, or if the code you
are trying to fix is too big and complicated. Sometimes the best option is to retreat, simplifying
the program until you get back to something that works.

Beginning programmers are often reluctant to retreat because they can’t stand to delete a line
of code (even if it’s wrong). If it makes you feel better, copy your program into another file
before you start stripping it down. Then you can copy the pieces back one at a time.

Finding a hard bug requires reading, running, ruminating, retreating, and sometimes resting. If
you get stuck on one of these activities, try the others.

12.11. Glossary
default value: The value assigned to a parameter if no argument is provided.

override: To replace a default value with an argument.

deterministic: A deterministic program does the same thing each time it runs, given the same
inputs.

pseudorandom: A pseudorandom sequence of numbers appears to be random, but is
generated by a deterministic program.

bigram: A sequence of two elements, often words.

trigram: A sequence of three elements.

n-gram: A sequence of an unspecified number of elements.

rubber duck debugging: A way of debugging by explaining a problem aloud to an inanimate
object.

12.12. Exercises

12.12.1. Ask a virtual assistant
In add_bigram , the if statement creates a new list or appends an element to an existing list,
depending on whether the key is already in the dictionary.

Dictionaries provide a method called setdefault that we can use to do the same thing more
concisely. Ask a virtual assistant how it works, or copy add_word into a virtual assistant and ask
“Can you rewrite this using setdefault ?”

In this chapter we implemented Markov chain text analysis and generation. If you are curious,
you can ask a virtual assistant for more information on the topic. One of the things you might
learn is that virtual assistants use algorithms that are similar in many ways – but also different in
important ways. Ask a VA, “What are the differences between large language models like GPT
and Markov chain text analysis?”

12.12.2. Exercise
Write a function that counts the number of times each trigram (sequence of three words)
appears. If you test your function with the text of Dr. Jekyll and Mr. Hyde, you should find that
the most common trigram is “said the lawyer”.

Hint: Write a function called count_trigram that is similar to count_bigram . Then write a
function called process_word_trigram that is similar to process_word_bigram .

This cell tells Jupyter to provide detailed debugging information
when a runtime error occurs. Run it before working on the exercises.

%xmode Verbose

def add_bigram(bigram):
 first, second = bigram

 if first not in successor_map:
 successor_map[first] = [second]
 else:
 successor_map[first].append(second)

12.12.3. Exercise
Now let’s implement Markov chain text analysis with a mapping from each bigram to a list of
possible successors.

Starting with add_bigram , write a function called add_trigram that takes a list of three words
and either adds or updates an item in successor_map , using the first two words as the key and
the third word as a possible successor.

Here’s a version of process_word_trigram that calls add_trigram .

You can use the following loop to test your function with the words from the book.

In the next exercise, you’ll use the results to generate new random text.

12.12.4. Exercise
For this exercise, we’ll assume that successor_map is a dictionary that maps from each bigram
to the list of words that follow it.

To generate random text, we’ll start by choosing a random key from successor_map .

def process_word_trigram(word):
 window.append(word)

 if len(window) == 3:
 add_trigram(window)
 window.pop(0)

successor_map = {}
window = []

for line in open(filename):
 for word in split_line(line):
 word = clean_word(word)
 process_word_trigram(word)

successors = list(successor_map)
bigram = random.choice(successors)
bigram

Now write a loop that generates 50 more words following these steps:

1. In successor_map , look up the list of words that can follow bigram .

2. Choose one of them at random and print it.

3. For the next iteration, make a new bigram that contains the second word from bigram and
the chosen successor.

For example, if we start with the bigram ('doubted', 'if') and choose 'from' as its
successor, the next bigram is ('if', 'from') .

If everything is working, you should find that the generated text is recognizably similar in style
to the original, and some phrases make sense, but the text might wander from one topic to
another.

As a bonus exercise, modify your solution to the last two exercises to use trigrams as keys in
successor_map , and see what effect it has on the results.

Think Python: 3rd Edition

Copyright 2024 Allen B. Downey

Code license: MIT License

Text license: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

('doubted', 'if')

https://allendowney.github.io/ThinkPython/index.html
https://allendowney.com/
https://mit-license.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Files and Databases
Contents

13.1. Filenames and paths

13.2. f-strings

13.3. YAML

13.4. Shelve

13.5. Storing data structures

13.6. Checking for equivalent files

13.7. Walking directories

13.8. Debugging

13.9. Glossary

13.10. Exercises

You can order print and ebook versions of Think Python 3e from Bookshop.org and Amazon.

Most of the programs we have seen so far are ephemeral in the sense that they run for a short
time and produce output, but when they end, their data disappears. Each time you run an
ephemeral program, it starts with a clean slate.

Other programs are persistent: they run for a long time (or all the time); they keep at least some
of their data in long-term storage; and if they shut down and restart, they pick up where they
left off.

A simple way for programs to maintain their data is by reading and writing text files. A more
versatile alternative is to store data in a database. Databases are specialized files that can be
read and written more efficiently than text files, and they provide additional capabilities.

In this chapter, we’ll write programs that read and write text files and databases, and as an
exercise you’ll write a program that searches a collection of photos for duplicates. But before
you can work with a file, you have to find it, so we’ll start with file names, paths, and directories.

Print to PDF

https://bookshop.org/a/98697/9781098155438
https://www.amazon.com/_/dp/1098155432?smid=ATVPDKIKX0DER&_encoding=UTF8&tag=oreilly20-20&_encoding=UTF8&tag=greenteapre01-20&linkCode=ur2&linkId=e2a529f94920295d27ec8a06e757dc7c&camp=1789&creative=9325

13.1. Filenames and paths
Files are organized into directories, also called “folders”. Every running program has a current
working directory, which is the default directory for most operations. For example, when you
open a file, Python looks for it in the current working directory.

The os module provides functions for working with files and directories (“os” stands for
“operating system”). It provides a function called getcwd that gets the name of the current
working directory.

The result in this example is the home directory of a user named dinsdale . A string like
'/home/dinsdale' that identifies a file or directory is called a path.

A simple filename like 'memo.txt' is also considered a path, but it is a relative path because it
specifies a file name relative to the current directory. In this example, the current directory is
/home/dinsdale , so 'memo.txt' is equivalent to the complete path
'/home/dinsdale/memo.txt' .

A path that begins with / does not depend on the current directory – it is called an absolute
path. To find the absolute path to a file, you can use abspath .

The os module provides other functions for working with filenames and paths. listdir returns
a list of the contents of the given directory, including files and other directories. Here’s an
example that lists the contents of a directory named photos .

import os

os.getcwd()

'/home/dinsdale'

os.path.abspath('memo.txt')

'/home/dinsdale/memo.txt'

os.listdir('photos')

This directory contains a text file named notes.txt and three directories. The directories
contain image files in the JPEG format.

To check whether a file or directory exists, we can use os.path.exists .

To check whether a path refers to a file or directory, we can use isdir , which return True if a
path refers to a directory.

And isfile which returns True if a path refers to a file.

['digests.dat',
 'digests.dir',
 'notes.txt',
 'new_notes.txt',
 'mar-2023',
 'digests.bak',
 'jan-2023',
 'feb-2023']

os.listdir('photos/jan-2023')

['photo3.jpg', 'photo2.jpg', 'photo1.jpg']

os.path.exists('photos')

True

os.path.exists('photos/apr-2023')

False

os.path.isdir('photos')

True

One challenge of working with paths is that they look different on different operating systems.
On macOS and UNIX systems like Linux, the directory and file names in a path are separated by
a forward slash, / . Windows uses a backward slash, \ . So, if you you run these examples on
Windows, you will see backward slashes in the paths, and you’ll have to replace the forward
slashes in the examples.

Or, to write code that works on both systems, you can use os.path.join , which joins directory
and filenames into a path using a forward or backward slash, depending on which operating
system you are using.

Later in this chapter we’ll use these functions to search a set of directories and find all of the
image files.

13.2. f-strings
One way for programs to store data is to write it to a text file. For example, suppose you are a
camel spotter, and you want to record the number of camels you have seen during a period of
observation. And suppose that in one and a half years, you have spotted 23 camels. The data in
your camel-spotting book might look like this.

To write this data to a file, you can use the write method, which we saw in Chapter 8. The
argument of write has to be a string, so if we want to put other values in a file, we have to
convert them to strings. The easiest way to do that is with the built-in function str .

os.path.isfile('photos/notes.txt')

True

os.path.join('photos', 'jan-2023', 'photo1.jpg')

'photos/jan-2023/photo1.jpg'

num_years = 1.5
num_camels = 23

Here’s what that looks like:

That works, but write doesn’t add a space or newline unless you include it explicitly. If we read
back the file, we see that the two numbers are run together.

At the very least, we should add whitespace between the numbers. And while we’re at it, let’s
add some explanatory text.

To write a combination of strings and other values, we can use an f-string, which is a string that
has the letter f before the opening quotation mark, and contains one or more Python
expressions in curly braces. The following f-string contains one expression, which is a variable
name.

The result is a string where the expression has been evaluated and replaced with the result.
There can be more than one expression.

And the expressions can contain operators and function calls.

writer = open('camel-spotting-book.txt', 'w')
writer.write(str(num_years))
writer.write(str(num_camels))
writer.close()

open('camel-spotting-book.txt').read()

'1.523'

f'I have spotted {num_camels} camels'

'I have spotted 23 camels'

f'In {num_years} years I have spotted {num_camels} camels'

'In 1.5 years I have spotted 23 camels'

So we could write the data to a text file like this.

Both f-strings end with the sequence \n , which adds a newline character.

We can read the file back like this:

In an f-string, an expression in curly brace is converted to a string, so you can include lists,
dictionaries, and other types.

13.3. YAML
One of the reasons programs read and write files is to store configuration data, which is
information that specifies what the program should do and how.

line = f'In {round(num_years * 12)} months I have spotted {num_camels} camels'
line

'In 18 months I have spotted 23 camels'

writer = open('camel-spotting-book.txt', 'w')
writer.write(f'Years of observation: {num_years}\n')
writer.write(f'Camels spotted: {num_camels}\n')
writer.close()

data = open('camel-spotting-book.txt').read()
print(data)

Years of observation: 1.5
Camels spotted: 23

t = [1, 2, 3]
d = {'one': 1}
f'Here is a list {t} and a dictionary {d}'

"Here is a list [1, 2, 3] and a dictionary {'one': 1}"

For example, in a program that searches for duplicate photos, we might have a dictionary called
config that contains the name of the directory to search, the name of another directory where

it should store the results, and a list of file extensions it should use to identify image files.

Here’s what it might look like:

To write this data in a text file, we could use f-strings, as in the previous section. But it is easier to
use a module called yaml that is designed for just this sort of thing.

The yaml module provides functions to work with YAML files, which are text files formatted to
be easy for humans and programs to read and write.

Here’s an example that uses the dump function to write the config dictionary to a YAML file.

If we read back the contents of the file, we can see what the YAML format looks like.

Now, we can use safe_load to read back the YAML file.

config = {
 'photo_dir': 'photos',
 'data_dir': 'photo_info',
 'extensions': ['jpg', 'jpeg'],
}

import yaml

config_filename = 'config.yaml'
writer = open(config_filename, 'w')
yaml.dump(config, writer)
writer.close()

readback = open(config_filename).read()
print(readback)

data_dir: photo_info
extensions:
- jpg
- jpeg
photo_dir: photos

The result is new dictionary that contains the same information as the original, but it is not the
same dictionary.

Converting an object like a dictionary to a string is called serialization. Converting the string
back to an object is called deserialization. If you serialize and then deserialize an object, the
result should be equivalent to the original.

13.4. Shelve
So far we’ve been reading and writing text files – now let’s consider databases. A database is a
file that is organized for storing data. Some databases are organized like a table with rows and
columns of information. Others are organized like a dictionary that maps from keys to values;
they are sometimes called key-value stores.

The shelve module provides functions for creating and updating a key-value store called a
“shelf”. As an example, we’ll create a shelf to contain captions for the figures in the photos
directory. We’ll use the config dictionary to get the name of the directory where we should put
the shelf.

reader = open(config_filename)
config_readback = yaml.safe_load(reader)
config_readback

{'data_dir': 'photo_info',
 'extensions': ['jpg', 'jpeg'],
 'photo_dir': 'photos'}

config is config_readback

False

config['data_dir']

'photo_info'

We can use os.makedirs to create this directory, if it doesn’t already exist.

And os.path.join to make a path that includes the name of the directory and the name of the
shelf file, captions .

Now we can use shelve.open to open the shelf file. The argument c indicates that the file
should be created if necessary.

The return value is officially a DbfilenameShelf object, more casually called a shelf object.

The shelf object behaves in many ways like a dictionary. For example, we can use the bracket
operator to add an item, which is a mapping from a key to a value.

In this example, the key is the path to an image file and the value is a string that describes the
image.

We also use the bracket operator to look up a key and get the corresponding value.

os.makedirs(config['data_dir'], exist_ok=True)

db_file = os.path.join(config['data_dir'], 'captions')
db_file

'photo_info/captions'

import shelve

db = shelve.open(db_file, 'c')
db

<shelve.DbfilenameShelf at 0x7fcc902cc430>

key = 'jan-2023/photo1.jpg'
db[key] = 'Cat nose'

value = db[key]
value

If you make another assignment to an existing key, shelve replaces the old value.

Some dictionary methods, like keys , values and items , also work with shelf objects.

We can use the in operator to check whether a key appears in the shelf.

And we can use a for statement to loop through the keys.

As with other files, you should close the database when you are done.

'Cat nose'

db[key] = 'Close up view of a cat nose'
db[key]

'Close up view of a cat nose'

list(db.keys())

['jan-2023/photo1.jpg']

list(db.values())

['Close up view of a cat nose']

key in db

True

for key in db:
 print(key, ':', db[key])

jan-2023/photo1.jpg : Close up view of a cat nose

Now if we list the contents of the data directory, we see two files.

captions.dat contains the data we just stored. captions.dir contains information about the
organization of the database that makes it more efficient to access. The suffix dir stands for
“directory”, but it has nothing to do with the directories we’ve been working with that contain
files.

13.5. Storing data structures
In the previous example, the keys and values in the shelf are strings. But we can also use a shelf
to contain data structures like lists and dictionaries.

As an example, let’s revisit the anagram example from an exercise in Chapter 11. Recall that we
made a dictionary that maps from a sorted string of letters to the list of words that can be
spelled with those letters. For example, the key 'opst' maps to the list ['opts', 'post',
'pots', 'spot', 'stop', 'tops'] .

We’ll use the following function to sort the letters in a word.

And here’s an example.

db.close()

os.listdir(config['data_dir'])

['captions.dir', 'captions.dat']

def sort_word(word):
 return ''.join(sorted(word))

word = 'pots'
key = sort_word(word)
key

'opst'

https://allendowney.github.io/ThinkPython/chap11.html#section-exercise-11

Now let’s open a shelf called anagram_map . The argument 'n' means we should always create
a new, empty shelf, even if one already exists.

Now we can add an item to the shelf like this.

In this item, the key is a string and the value is a list of strings.

Now suppose we find another word that contains the same letters, like tops

The key is the same as in the previous example, so we want to append a second word to the
same list of strings. Here’s how we would do it if db were a dictionary.

But if we run that and then look up the key in the shelf, it looks like it has not been updated.

Here’s the problem: when we look up the key, we get a list of strings, but if we modify the list of
strings, it does not affect the shelf. If we want to update the shelf, we have to read the old value,

db = shelve.open('anagram_map', 'n')

db[key] = [word]
db[key]

['pots']

word = 'tops'
key = sort_word(word)
key

'opst'

db[key].append(word) # INCORRECT

db[key]

['pots']

update it, and then write the new value back to the shelf.

Now the value in the shelf is updated.

As an exercise, you can finish this example by reading the word list and storing all of the
anagrams in a shelf.

13.6. Checking for equivalent files
Now let’s get back to the goal of this chapter: searching for different files that contain the same
data. One way to check is to read the contents of both files and compare.

If the files contain images, we have to open them with mode 'rb' , where 'r' means we want
to read the contents and 'b' indicates binary mode. In binary mode, the contents are not
interpreted as text – they are treated as a sequence of bytes.

Here’s an example that opens and reads an image file.

The result from read is a bytes object – as the name suggests, it contains a sequence of bytes.

In general the contents of an image file and not human-readable. But if we read the contents
from a second file, we can use the == operator to compare.

anagram_list = db[key]
anagram_list.append(word)
db[key] = anagram_list

db[key]

['pots', 'tops']

path1 = 'photos/jan-2023/photo1.jpg'
data1 = open(path1, 'rb').read()
type(data1)

bytes

These two files are not equivalent.

Let’s encapsulate what we have so far in a function.

If we have only two files, this function is a good option. But suppose we have a large number of
files and we want to know whether any two of them contain the same data. It would be
inefficient to compare every pair of files.

An alternative is to use a hash function, which takes the contents of a file and computes a
digest, which is usually a large integer. If two files contain the same data, they will have the
same digest. If two files differ, they will almost always have different digests.

The hashlib module provides several hash functions – the one we’ll use is called md5 . We’ll
start by using hashlib.md5 to create a HASH object.

The HASH object provides an update method that takes the contents of the file as an argument.

path2 = 'photos/jan-2023/photo2.jpg'
data2 = open(path2, 'rb').read()
data1 == data2

False

def same_contents(path1, path2):
 data1 = open(path1, 'rb').read()
 data2 = open(path2, 'rb').read()
 return data1 == data2

import hashlib

md5_hash = hashlib.md5()
type(md5_hash)

_hashlib.HASH

md5_hash.update(data1)

Now we can use hexdigest to get the digest as a string of hexadecimal digits that represent an
integer in base 16.

The following function encapsulates these steps.

If we hash the contents of a different file, we can confirm that we get a different digest.

Now we have almost everything we need to find equivalent files. The last step is to search a
directory and find all of the images files.

13.7. Walking directories
The following function takes as an argument the directory we want to search. It uses listdir to
loop through the contents of the directory. When it finds a file, it prints its complete path. When
it finds a directory, it calls itself recursively to search the subdirectory.

digest = md5_hash.hexdigest()
digest

'aa1d2fc25b7ae247b2931f5a0882fa37'

def md5_digest(filename):
 data = open(filename, 'rb').read()
 md5_hash = hashlib.md5()
 md5_hash.update(data)
 digest = md5_hash.hexdigest()
 return digest

filename2 = 'photos/feb-2023/photo2.jpg'
md5_digest(filename2)

'6a501b11b01f89af9c3f6591d7f02c49'

We can use it like this:

The order of the results depends on details of the operating system.

13.8. Debugging
When you are reading and writing files, you might run into problems with whitespace. These
errors can be hard to debug because whitespace characters are normally invisible. For example,
here’s a string that contains spaces, a tab represented by the sequence \t , and a newline
represented by the sequence \n . When we print it, we don’t see the whitespace characters.

def walk(dirname):
 for name in os.listdir(dirname):
 path = os.path.join(dirname, name)

 if os.path.isfile(path):
 print(path)
 elif os.path.isdir(path):
 walk(path)

walk('photos')

photos/digests.dat
photos/digests.dir
photos/notes.txt
photos/new_notes.txt
photos/mar-2023/photo2.jpg
photos/mar-2023/photo1.jpg
photos/digests.bak
photos/jan-2023/photo3.jpg
photos/jan-2023/photo2.jpg
photos/jan-2023/photo1.jpg
photos/feb-2023/photo2.jpg
photos/feb-2023/photo1.jpg

s = '1 2\t 3\n 4'
print(s)

1 2 3
 4

The built-in function repr can help. It takes any object as an argument and returns a string
representation of the object. For strings, it represents whitespace characters with backslash
sequences.

This can be helpful for debugging.

One other problem you might run into is that different systems use different characters to
indicate the end of a line. Some systems use a newline, represented \n . Others use a return
character, represented \r . Some use both. If you move files between different systems, these
inconsistencies can cause problems.

File name capitalization is another issue you might encounter if you work with different
operating systems. In macOS and UNIX, file names can contain lowercase and uppercase letters,
digits, and most symbols. But many Windows applications ignore the difference between
lowercase and uppercase letters, and several symbols that are allowed in macOS and UNIX are
not allowed in Windows.

13.9. Glossary
ephemeral: An ephemeral program typically runs for a short time and, when it ends, its data are
lost.

persistent: A persistent program runs indefinitely and keeps at least some of its data in
permanent storage.

directory: A collection of files and other directories.

current working directory: The default directory used by a program unless another directory is
specified.

path: A string that specifies a sequence of directories, often leading to a file.

relative path: A path that starts from the current working directory, or some other specified
directory.

print(repr(s))

'1 2\t 3\n 4'

absolute path: A path that does not depend on the current directory.

f-string: A string that has the letter f before the opening quotation mark, and contains one or
more expressions in curly braces.

configuration data: Data, often stored in a file, that specifies what a program should do and
how.

serialization: Converting an object to a string.

deserialization: Converting a string to an object.

database: A file whose contents are organized to perform certain operations efficiently.

key-value stores: A database whose contents are organized like a dictionary with keys that
correspond to values.

binary mode: A way of opening a file so the contents are interpreted as sequence of bytes
rather than a sequence of characters.

hash function: A function that takes and object and computes an integer, which is sometimes
called a digest.

digest: The result of a hash function, especially when it is used to check whether two objects are
the same.

13.10. Exercises
This cell tells Jupyter to provide detailed debugging information
when a runtime error occurs. Run it before working on the exercises.

%xmode Verbose

Exception reporting mode: Verbose

13.10.1. Ask a virtual assistant
There are several topics that came up in this chapter that I did not explain in detail. Here are
some questions you can ask a virtual assistant to get more information.

“What are the differences between ephemeral and persistent programs?”

“What are some examples of persistent programs?”

“What’s the difference between a relative path and an absolute path?”

“Why does the yaml module have functions called load and safe_load ?”

“When I write a Python shelf, what are the files with suffixes dat and dir ?”

“Other than key-values stores, what other kinds of databases are there?”

“When I read a file, what’s the difference between binary mode and text mode?”

“What are the differences between a bytes object and a string?”

“What is a hash function?”

“What is an MD5 digest?”

As always, if you get stuck on any of the following exercises, consider asking a VA for help. Along
with your question, you might want to paste in the relevant functions from this chapter.

13.10.2. Exercise
Write a function called replace_all that takes as arguments a pattern string, a replacement
string, and two filenames. It should read the first file and write the contents into the second file
(creating it if necessary). If the pattern string appears anywhere in the contents, it should be
replaced with the replacement string.

Here’s an outline of the function to get you started.

def replace_all(old, new, source_path, dest_path):
 # read the contents of the source file
 reader = open(source_path)

 # replace the old string with the new

 # write the result into the destination file

To test your function, read the file photos/notes.txt , replace 'photos' with 'images' , and
write the result to the file photos/new_notes.txt .

13.10.3. Exercise
In a previous section, we used the shelve module to make a key-value store that maps from a
sorted string of letters to a list of anagrams. To finish the example, write a function called
add_word that takes as arguments a string and a shelf object.

It should sort the letters of the word to make a key, then check whether the key is already in the
shelf. If not, it should make a list that contains the new word and add it to the shelf. If so, it
should append the new word to the existing value.

13.10.4. Exercise
In a large collection of files, there may be more than one copy of the same file, stored in
different directories or with different file names. The goal of this exercise is to search for
duplicates. As an example, we’ll work with image files in the photos directory.

Here’s how it will work:

We’ll use the walk function from Walking directories to search this directory for files that
end with one of the extensions in config['extensions'] .

For each file, we’ll use md5_digest from Checking for equivalent files to compute a digest
of the contents.

Using a shelf, we’ll make a mapping from each digest to a list of paths with that digest.

Finally, we’ll search the shelf for any digests that map to multiple files.

If we find any, we’ll use same_contents to confirm that the files contain the same data.

I’ll suggest some functions to write first, then we’ll bring it all together.

1. To identify image files, write a function called is_image that takes a path and a list of file
extensions, and returns True if the path ends with one of the extensions in the list. Hint:
Use os.path.splitext – or ask a virtual assistant to write this function for you.

2. Write a function called add_path that takes as arguments a path and a shelf. It should use
md5_digest to compute a digest of the file contents. Then it should update the shelf, either

creating a new item that maps from the digest to a list containing the path, or appending
the path to the list if it exists.

3. Write a version of walk called walk_images that takes a directory and walks through the
files in the directory and its subdirectories. For each file, it should use is_image to check
whether it’s an image file and add_path to add it to the shelf.

When everything is working, you can use the following program to create the shelf, search the
photos directory and add paths to the shelf, and then check whether there are multiple files

with the same digest.

You should find one pair of files that have the same digest. Use same_contents to check
whether they contain the same data.

Think Python: 3rd Edition

Copyright 2024 Allen B. Downey

Code license: MIT License

Text license: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

db = shelve.open('photos/digests', 'n')
walk_images('photos')

for digest, paths in db.items():
 if len(paths) > 1:
 print(paths)

https://allendowney.github.io/ThinkPython/index.html
https://allendowney.com/
https://mit-license.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Classes and Functions
Contents

14.1. Programmer-defined types

14.2. Attributes

14.3. Objects as return values

14.4. Objects are mutable

14.5. Copying

14.6. Pure functions

14.7. Prototype and patch

14.8. Design-first development

14.9. Debugging

14.10. Glossary

14.11. Exercises

You can order print and ebook versions of Think Python 3e from Bookshop.org and Amazon.

At this point you know how to use functions to organize code and how to use built-in types to
organize data. The next step is object-oriented programming, which uses programmer-
defined types to organize both code and data.

Object-oriented programming is a big topic, so we will proceed gradually. In this chapter, we’ll
start with code that is not idiomatic – that is, it is not the kind of code experienced
programmers write – but it is a good place to start. In the next two chapters, we will use
additional features to write more idiomatic code.

14.1. Programmer-defined types
We have used many of Python’s built-in types – now we will define a new type. As a first
example, we’ll create a type called Time that represents a time of day. A programmer-defined

https://bookshop.org/a/98697/9781098155438
https://www.amazon.com/_/dp/1098155432?smid=ATVPDKIKX0DER&_encoding=UTF8&tag=oreilly20-20&_encoding=UTF8&tag=greenteapre01-20&linkCode=ur2&linkId=e2a529f94920295d27ec8a06e757dc7c&camp=1789&creative=9325

type is also called a class. A class definition looks like this:

The header indicates that the new class is called Time . The body is a docstring that explains
what the class is for. Defining a class creates a class object.

The class object is like a factory for creating objects. To create a Time object, you call Time as
if it were a function.

The result is a new object whose type is __main__.Time , where __main__ is the name of the
module where Time is defined.

When you print an object, Python tells you what type it is and where it is stored in memory (the
prefix 0x means that the following number is in hexadecimal).

Creating a new object is called instantiation, and the object is an instance of the class.

14.2. Attributes
An object can contain variables, which are called attributes and pronounced with the emphasis
on the first syllable, like “AT-trib-ute”, rather than the second syllable, like “a-TRIB-ute”. We can
create attributes using dot notation.

class Time:
 """Represents a time of day."""

lunch = Time()

type(lunch)

__main__.Time

print(lunch)

<__main__.Time object at 0x7f31440ad0c0>

This example creates attributes called hour , minute , and second , which contain the hours,
minutes, and seconds of the time 11:59:01 , which is lunch time as far as I am concerned.

The following diagram shows the state of lunch and its attributes after these assignments.

The variable lunch refers to a Time object, which contains three attributes. Each attribute
refers to an integer. A state diagram like this – which shows an object and its attributes – is
called an object diagram.

You can read the value of an attribute using the dot operator.

You can use an attribute as part of any expression.

And you can use the dot operator in an expression in an f-string.

lunch.hour = 11
lunch.minute = 59
lunch.second = 1

lunch.hour

11

total_minutes = lunch.hour * 60 + lunch.minute
total_minutes

719

f'{lunch.hour}:{lunch.minute}:{lunch.second}'

But notice that the previous example is not in the standard format. To fix it, we have to print the
minute and second attributes with a leading zero. We can do that by extending the

expressions in curly braces with a format specifier. In the following example, the format
specifiers indicate that minute and second should be displayed with at least two digits and a
leading zero if needed.

We’ll use this f-string to write a function that displays the value of a Time object. You can pass
an object as an argument in the usual way. For example, the following function takes a Time
object as an argument.

When we call it, we can pass lunch as an argument.

14.3. Objects as return values
Functions can return objects. For example, make_time takes parameters called hour , minute ,
and second , stores them as attributes in a Time object, and returns the new object.

'11:59:1'

f'{lunch.hour}:{lunch.minute:02d}:{lunch.second:02d}'

'11:59:01'

def print_time(time):
 s = f'{time.hour:02d}:{time.minute:02d}:{time.second:02d}'
 print(s)

print_time(lunch)

11:59:01

It might be surprising that the parameters have the same names as the attributes, but that’s a
common way to write a function like this. Here’s how we use make_time to create a Time
object.

14.4. Objects are mutable
Suppose you are going to a screening of a movie, like Monty Python and the Holy Grail, which
starts at 9:20 PM and runs for 92 minutes, which is one hour 32 minutes. What time will the
movie end?

First, we’ll create a Time object that represents the start time.

To find the end time, we can modify the attributes of the Time object, adding the duration of
the movie.

def make_time(hour, minute, second):
 time = Time()
 time.hour = hour
 time.minute = minute
 time.second = second
 return time

time = make_time(11, 59, 1)
print_time(time)

11:59:01

start = make_time(9, 20, 0)
print_time(start)

09:20:00

start.hour += 1
start.minute += 32
print_time(start)

The movie will be over at 10:52 PM.

Let’s encapsulate this computation in a function and generalize it to take the duration of the
movie in three parameters: hours , minutes , and seconds .

Here is an example that demonstrates the effect.

The following stack diagram shows the state of the program just before increment_time
modifies the object.

Inside the function, time is an alias for start , so when time is modified, start changes.

This function works, but after it runs, we’re left with a variable named start that refers to an
object that represents the end time, and we no longer have an object that represents the start
time. It would be better to leave start unchanged and make a new object to represent the
end time. We can do that by copying start and modifying the copy.

10:52:00

def increment_time(time, hours, minutes, seconds):
 time.hour += hours
 time.minute += minutes
 time.second += seconds

start = make_time(9, 20, 0)
increment_time(start, 1, 32, 0)
print_time(start)

10:52:00

14.5. Copying
The copy module provides a function called copy that can duplicate any object. We can
import it like this.

To see how it works, let’s start with a new Time object that represents the start time of the
movie.

And make a copy.

Now start and end contain the same data.

But the is operator confirms that they are not the same object.

Let’s see what the == operator does.

from copy import copy

start = make_time(9, 20, 0)

end = copy(start)

print_time(start)
print_time(end)

09:20:00
09:20:00

start is end

False

start == end

You might expect == to yield True because the objects contain the same data. But for
programmer-defined classes, the default behavior of the == operator is the same as the is
operator – it checks identity, not equivalence.

14.6. Pure functions
We can use copy to write pure functions that don’t modify their parameters. For example,
here’s a function that takes a Time object and a duration in hours, minutes and seconds. It
makes a copy of the original object, uses increment_time to modify the copy, and returns it.

Here’s how we use it.

The return value is a new object representing the end time of the movie. And we can confirm
that start is unchanged.

add_time is a pure function because it does not modify any of the objects passed to it as
arguments and its only effect is to return a value.

False

def add_time(time, hours, minutes, seconds):
 total = copy(time)
 increment_time(total, hours, minutes, seconds)
 return total

end = add_time(start, 1, 32, 0)
print_time(end)

10:52:00

print_time(start)

09:20:00

Anything that can be done with impure functions can also be done with pure functions. In fact,
some programming languages only allow pure functions. Programs that use pure functions
might be less error-prone, but impure functions are sometimes convenient and can be more
efficient.

In general, I suggest you write pure functions whenever it is reasonable and resort to impure
functions only if there is a compelling advantage. This approach might be called a functional
programming style.

14.7. Prototype and patch
In the previous example, increment_time and add_time seem to work, but if we try another
example, we’ll see that they are not quite correct.

Suppose you arrive at the theater and discover that the movie starts at 9:40 , not 9:20 . Here’s
what happens when we compute the updated end time.

The result is not a valid time. The problem is that increment_time does not deal with cases
where the number of seconds or minutes adds up to more than 60 .

Here’s an improved version that checks whether second exceeds or equals 60 – if so, it
increments minute – then checks whether minute exceeds or equals 60 – if so, it increments
hour .

start = make_time(9, 40, 0)
end = add_time(start, 1, 32, 0)
print_time(end)

10:72:00

Fixing increment_time also fixes add_time , which uses it. So now the previous example works
correctly.

But this function is still not correct, because the arguments might be bigger than 60 . For
example, suppose we are given the run time as 92 minutes, rather than 1 hours and 32
minutes. We might call add_time like this.

The result is not a valid time. So let’s try a different approach, using the divmod function. We’ll
make a copy of start and modify it by incrementing the minute attribute.

def increment_time(time, hours, minutes, seconds):
 time.hour += hours
 time.minute += minutes
 time.second += seconds

 if time.second >= 60:
 time.second -= 60
 time.minute += 1

 if time.minute >= 60:
 time.minute -= 60
 time.hour += 1

end = add_time(start, 1, 32, 0)
print_time(end)

11:12:00

end = add_time(start, 0, 92, 0)
print_time(end)

10:72:00

end = copy(start)
end.minute = start.minute + 92
end.minute

132

Now minute is 132 , which is 2 hours and 12 minutes. We can use divmod to divide by 60
and return the number of whole hours and the number of minutes left over.

Now minute is correct, and we can add the hours to hour .

The result is a valid time. We can do the same thing with hour and second , and encapsulate
the whole process in a function.

With this version of increment_time , add_time works correctly, even if the arguments exceed
60 .

This section demonstrates a program development plan I call prototype and patch. We started
with a simple prototype that worked correctly for the first example. Then we tested it with more

carry, end.minute = divmod(end.minute, 60)
carry, end.minute

(2, 12)

end.hour += carry
print_time(end)

11:12:00

def increment_time(time, hours, minutes, seconds):
 time.hour += hours
 time.minute += minutes
 time.second += seconds

 carry, time.second = divmod(time.second, 60)
 carry, time.minute = divmod(time.minute + carry, 60)
 carry, time.hour = divmod(time.hour + carry, 60)

end = add_time(start, 0, 90, 120)
print_time(end)

11:12:00

difficult examples – when we found an error, we modified the program to fix it, like putting a
patch on tire with a puncture.

This approach can be effective, especially if you don’t yet have a deep understanding of the
problem. But incremental corrections can generate code that is unnecessarily complicated –
since it deals with many special cases – and unreliable – since it is hard to know if you have
found all the errors.

14.8. Design-first development
An alternative plan is design-first development, which involves more planning before
prototyping. In a design-first process, sometimes a high-level insight into the problem makes
the programming much easier.

In this case, the insight is that we can think of a Time object as a three-digit number in base 60
– also known as sexagesimal. The second attribute is the “ones column”, the minute attribute
is the “sixties column”, and the hour attribute is the “thirty-six hundreds column”. When we
wrote increment_time , we were effectively doing addition in base 60, which is why we had to
carry from one column to the next.

This observation suggests another approach to the whole problem – we can convert Time
objects to integers and take advantage of the fact that Python knows how to do integer
arithmetic.

Here is a function that converts from a Time to an integer.

The result is the number of seconds since the beginning of the day. For example, 01:01:01 is
1 hour, 1 minute and 1 second from the beginning of the day, which is the sum of 3600

seconds, 60 seconds, and 1 second.

def time_to_int(time):
 minutes = time.hour * 60 + time.minute
 seconds = minutes * 60 + time.second
 return seconds

time = make_time(1, 1, 1)
print_time(time)
time_to_int(time)

And here’s a function that goes in the other direction – converting an integer to a Time object
– using the divmod function.

We can test it by converting the previous example back to a Time .

Using these functions, we can write a more concise version of add_time .

The first line converts the arguments to a Time object called duration . The second line
converts time and duration to seconds and adds them. The third line converts the sum to a
Time object and returns it.

Here’s how it works.

01:01:01

3661

def int_to_time(seconds):
 minute, second = divmod(seconds, 60)
 hour, minute = divmod(minute, 60)
 return make_time(hour, minute, second)

time = int_to_time(3661)
print_time(time)

01:01:01

def add_time(time, hours, minutes, seconds):
 duration = make_time(hours, minutes, seconds)
 seconds = time_to_int(time) + time_to_int(duration)
 return int_to_time(seconds)

start = make_time(9, 40, 0)
end = add_time(start, 1, 32, 0)
print_time(end)

In some ways, converting from base 60 to base 10 and back is harder than just dealing with
times. Base conversion is more abstract; our intuition for dealing with time values is better.

But if we have the insight to treat times as base 60 numbers – and invest the effort to write the
conversion functions time_to_int and int_to_time – we get a program that is shorter, easier
to read and debug, and more reliable.

It is also easier to add features later. For example, imagine subtracting two Time objects to find
the duration between them. The naive approach is to implement subtraction with borrowing.
Using the conversion functions is easier and more likely to be correct.

Ironically, sometimes making a problem harder – or more general – makes it easier, because
there are fewer special cases and fewer opportunities for error.

14.9. Debugging
Python provides several built-in functions that are useful for testing and debugging programs
that work with objects. For example, if you are not sure what type an object is, you can ask.

You can also use isinstance to check whether an object is an instance of a particular class.

If you are not sure whether an object has a particular attribute, you can use the built-in function
hasattr .

11:12:00

type(start)

__main__.Time

isinstance(end, Time)

True

To get all of the attributes, and their values, in a dictionary, you can use vars .

The structshape module, which we saw in Chapter 11, also works with programmer-defined
types.

14.10. Glossary
object-oriented programming: A style of programming that uses objects to organize code
and data.

class: A programmer-defined type. A class definition creates a new class object.

class object: An object that represents a class – it is the result of a class definition.

instantiation: The process of creating an object that belongs to a class.

instance: An object that belongs to a class.

attribute: A variable associated with an object, also called an instance variable.

object diagram: A graphical representation of an object, its attributes, and their values.

hasattr(start, 'hour')

True

vars(start)

{'hour': 9, 'minute': 40, 'second': 0}

from structshape import structshape

t = start, end
structshape(t)

'tuple of 2 Time'

https://allendowney.github.io/ThinkPython/chap11.html#section-debugging-11

format specifier: In an f-string, a format specifier determines how a value is converted to a
string.

pure function: A function that does not modify its parameters or have any effect other than
returning a value.

functional programming style: A way of programming that uses pure functions whenever
possible.

prototype and patch: A way of developing programs by starting with a rough draft and
gradually adding features and fixing bugs.

design-first development: A way of developing programs with more careful planning that
prototype and patch.

14.11. Exercises

14.11.1. Ask a virtual assistant
There is a lot of new vocabulary in this chapter. A conversation with a virtual assistant can help
solidify your understanding. Consider asking:

“What is the difference between a class and a type?”

“What is the difference between an object and an instance?”

“What is the difference between a variable and an attribute?”

“What are the pros and cons of pure functions compared to impure functions?”

Because we are just getting started with object oriented programming, the code in this chapter
is not idiomatic – it is not the kind of code experienced programmers write. If you ask a virtual

This cell tells Jupyter to provide detailed debugging information
when a runtime error occurs. Run it before working on the exercises.

%xmode Verbose

Exception reporting mode: Verbose

assistant for help with the exercises, you will probably see features we have not covered yet. In
particular, you are likely to see a method called __init__ used to initialize the attributes of an
instance.

If these features make sense to you, go ahead and use them. But if not, be patient – we will get
there soon. In the meantime, see if you can solve the following exercises using only the features
we have covered so far.

Also, in this chapter we saw one example of a format specifier. For more information, ask “What
format specifiers can be used in a Python f-string?”

14.11.2. Exercise
Write a function called subtract_time that takes two Time objects and returns the interval
between them in seconds – assuming that they are two times during the same day.

14.11.3. Exercise
Write a function called is_after that takes two Time objects and returns True if the first time
is later in the day than the second, and False otherwise.

14.11.4. Exercise
Here’s a definition for a Date class that represents a date – that is, a year, month, and day of
the month.

def is_after(t1, t2):
 """Checks whether `t1` is after `t2`.

 >>> is_after(make_time(3, 2, 1), make_time(3, 2, 0))
 True
 >>> is_after(make_time(3, 2, 1), make_time(3, 2, 1))
 False
 >>> is_after(make_time(11, 12, 0), make_time(9, 40, 0))
 True
 """
 return None

1. Write a function called make_date that takes year , month , and day as parameters,
makes a Date object, assigns the parameters to attributes, and returns the result the new
object. Create an object that represents June 22, 1933.

2. Write a function called print_date that takes a Date object, uses an f-string to format the
attributes, and prints the result. If you test it with the Date you created, the result should
be 1933-06-22 .

3. Write a function called is_after that takes two Date objects as parameters and returns
True if the first comes after the second. Create a second object that represents September

17, 1933, and check whether it comes after the first object.

Hint: You might find it useful to write a function called date_to_tuple that takes a Date object
and returns a tuple that contains its attributes in year, month, day order.

Think Python: 3rd Edition

Copyright 2024 Allen B. Downey

Code license: MIT License

Text license: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

class Date:
 """Represents a year, month, and day"""

https://allendowney.github.io/ThinkPython/index.html
https://allendowney.com/
https://mit-license.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Classes and Methods
Contents

15.1. Defining methods

15.2. Another method

15.3. Static methods

15.4. Comparing Time objects

15.5. The __str__ method

15.6. The init method

15.7. Operator overloading

15.8. Debugging

15.9. Glossary

15.10. Exercises

You can order print and ebook versions of Think Python 3e from Bookshop.org and Amazon.

Python is an object-oriented language – that is, it provides features that support object-
oriented programming, which has these defining characteristics:

Most of the computation is expressed in terms of operations on objects.

Objects often represent things in the real world, and methods often correspond to the ways
things in the real world interact.

Programs include class and method definitions.

For example, in the previous chapter we defined a Time class that corresponds to the way
people record the time of day, and we defined functions that correspond to the kinds of things
people do with times. But there was no explicit connection between the definition of the Time
class and the function definitions that follow. We can make the connection explicit by rewriting a
function as a method, which is defined inside a class definition.

Print to PDF

https://bookshop.org/a/98697/9781098155438
https://www.amazon.com/_/dp/1098155432?smid=ATVPDKIKX0DER&_encoding=UTF8&tag=oreilly20-20&_encoding=UTF8&tag=greenteapre01-20&linkCode=ur2&linkId=e2a529f94920295d27ec8a06e757dc7c&camp=1789&creative=9325

15.1. Defining methods
In the previous chapter we defined a class named Time and wrote a function named
print_time that displays a time of day.

To make print_time a method, all we have to do is move the function definition inside the class
definition. Notice the change in indentation.

At the same time, we’ll change the name of the parameter from time to self . This change is
not necessary, but it is conventional for the first parameter of a method to be named self .

To call this method, you have to pass a Time object as an argument. Here’s the function we’ll
use to make a Time object.

And here’s a Time instance.

Now there are two ways to call print_time . The first (and less common) way is to use function
syntax.

class Time:
 """Represents the time of day."""

def print_time(time):
 s = f'{time.hour:02d}:{time.minute:02d}:{time.second:02d}'
 print(s)

class Time:
 """Represents the time of day."""

 def print_time(self):
 s = f'{self.hour:02d}:{self.minute:02d}:{self.second:02d}'
 print(s)

def make_time(hour, minute, second):
 time = Time()
 time.hour = hour
 time.minute = minute
 time.second = second
 return time

start = make_time(9, 40, 0)

In this version, Time is the name of the class, print_time is the name of the method, and
start is passed as a parameter. The second (and more idiomatic) way is to use method syntax:

In this version, start is the object the method is invoked on, which is called the receiver, based
on the analogy that invoking a method is like sending a message to an object.

Regardless of the syntax, the behavior of the method is the same. The receiver is assigned to the
first parameter, so inside the method, self refers to the same object as start .

15.2. Another method
Here’s the time_to_int function from the previous chapter.

And here’s a version rewritten as a method.

The first line uses the special command add_method_to , which adds a method to a previously-
defined class. This command works in a Jupyter notebook, but it is not part of Python, so it won’t

Time.print_time(start)

09:40:00

start.print_time()

09:40:00

def time_to_int(time):
 minutes = time.hour * 60 + time.minute
 seconds = minutes * 60 + time.second
 return seconds

%%add_method_to Time

 def time_to_int(self):
 minutes = self.hour * 60 + self.minute
 seconds = minutes * 60 + self.second
 return seconds

work in other environments. Normally, all methods of a class are inside the class definition, so
they get defined at the same time as the class. But for this book, it is helpful to define one
method at a time.

As in the previous example, the method definition is indented and the name of the parameter is
self . Other than that, the method is identical to the function. Here’s how we invoke it.

It is common to say that we “call” a function and “invoke” a method, but they mean the same
thing.

15.3. Static methods
As another example, let’s consider the int_to_time function. Here’s the version from the
previous chapter.

This function takes seconds as a parameter and returns a new Time object. If we transform it
into a method of the Time class, we have to invoke it on a Time object. But if we’re trying to
create a new Time object, what are we supposed to invoke it on?

We can solve this chicken-and-egg problem using a static method, which is a method that does
not require an instance of the class to be invoked. Here’s how we rewrite this function as a static
method.

start.time_to_int()

34800

def int_to_time(seconds):
 minute, second = divmod(seconds, 60)
 hour, minute = divmod(minute, 60)
 return make_time(hour, minute, second)

%%add_method_to Time

 def int_to_time(seconds):
 minute, second = divmod(seconds, 60)
 hour, minute = divmod(minute, 60)
 return make_time(hour, minute, second)

Because it is a static method, it does not have self as a parameter. To invoke it, we use Time ,
which is the class object.

The result is a new object that represents 9:40.

Now that we have Time.from_seconds , we can use it to write add_time as a method. Here’s the
function from the previous chapter.

And here’s a version rewritten as a method.

add_time has self as a parameter because it is not a static method. It is an ordinary method –
also called an instance method. To invoke it, we need a Time instance.

start = Time.int_to_time(34800)

start.print_time()

09:40:00

def add_time(time, hours, minutes, seconds):
 duration = make_time(hours, minutes, seconds)
 seconds = time_to_int(time) + time_to_int(duration)
 return int_to_time(seconds)

%%add_method_to Time

 def add_time(self, hours, minutes, seconds):
 duration = make_time(hours, minutes, seconds)
 seconds = time_to_int(self) + time_to_int(duration)
 return Time.int_to_time(seconds)

end = start.add_time(1, 32, 0)
print_time(end)

11:12:00

15.4. Comparing Time objects
As one more example, let’s write is_after as a method. Here’s the is_after function, which is
a solution to an exercise in the previous chapter.

And here it is as a method.

Because we’re comparing two objects, and the first parameter is self , we’ll call the second
parameter other . To use this method, we have to invoke it on one object and pass the other as
an argument.

One nice thing about this syntax is that it almost reads like a question, “ end is after start ?”

15.5. The __str__ method
When you write a method, you can choose almost any name you want. However, some names
have special meanings. For example, if an object has a method named __str__ , Python uses
that method to convert the object to a string. For example, here is a __str__ method for a time
object.

def is_after(t1, t2):
 return time_to_int(t1) > time_to_int(t2)

%%add_method_to Time

 def is_after(self, other):
 return self.time_to_int() > other.time_to_int()

end.is_after(start)

True

%%add_method_to Time

 def __str__(self):
 s = f'{self.hour:02d}:{self.minute:02d}:{self.second:02d}'
 return s

This method is similar to print_time , from the previous chapter, except that it returns the string
rather than printing it.

You can invoke this method in the usual way.

But Python can also invoke it for you. If you use the built-in function str to convert a Time
object to a string, Python uses the __str__ method in the Time class.

And it does the same if you print a Time object.

Methods like __str__ are called special methods. You can identify them because their names
begin and end with two underscores.

15.6. The init method
The most special of the special methods is __init__ , so-called because it initializes the
attributes of a new object. An __init__ method for the Time class might look like this:

end.__str__()

'11:12:00'

str(end)

'11:12:00'

print(end)

11:12:00

Now when we instantiate a Time object, Python invokes __init__ , and passes along the
arguments. So we can create an object and initialize the attributes at the same time.

In this example, the parameters are optional, so if you call Time with no arguments, you get the
default values.

If you provide one argument, it overrides hour :

If you provide two arguments, they override hour and minute .

%%add_method_to Time

 def __init__(self, hour=0, minute=0, second=0):
 self.hour = hour
 self.minute = minute
 self.second = second

time = Time(9, 40, 0)
print(time)

09:40:00

time = Time()
print(time)

00:00:00

time = Time(9)
print(time)

09:00:00

time = Time(9, 45)
print(time)

09:45:00

And if you provide three arguments, they override all three default values.

When I write a new class, I almost always start by writing __init__ , which makes it easier to
create objects, and __str__ , which is useful for debugging.

15.7. Operator overloading
By defining other special methods, you can specify the behavior of operators on programmer-
defined types. For example, if you define a method named __add__ for the Time class, you can
use the + operator on Time objects.

Here is an __add__ method.

We can use it like this.

There is a lot happening when we run these three lines of code:

When we instantiate a Time object, the __init__ method is invoked.

When we use the + operator with a Time object, its __add__ method is invoked.

And when we print a Time object, its __str__ method is invoked.

Changing the behavior of an operator so that it works with programmer-defined types is called
operator overloading. For every operator, like + , there is a corresponding special method, like
__add__ .

%%add_method_to Time

 def __add__(self, other):
 seconds = self.time_to_int() + other.time_to_int()
 return Time.int_to_time(seconds)

duration = Time(1, 32)
end = start + duration
print(end)

11:12:00

15.8. Debugging
A Time object is valid if the values of minute and second are between 0 and 60 – including
0 but not 60 – and if hour is positive. Also, hour and minute should be integer values, but

we might allow second to have a fraction part. Requirements like these are called invariants
because they should always be true. To put it a different way, if they are not true, something has
gone wrong.

Writing code to check invariants can help detect errors and find their causes. For example, you
might have a method like is_valid that takes a Time object and returns False if it violates an
invariant.

Then, at the beginning of each method you can check the arguments to make sure they are
valid.

The assert statement evaluates the expression that follows. If the result is True , it does
nothing; if the result is False , it causes an AssertionError . Here’s an example.

%%add_method_to Time

 def is_valid(self):
 if self.hour < 0 or self.minute < 0 or self.second < 0:
 return False
 if self.minute >= 60 or self.second >= 60:
 return False
 if not isinstance(self.hour, int):
 return False
 if not isinstance(self.minute, int):
 return False
 return True

%%add_method_to Time

 def is_after(self, other):
 assert self.is_valid(), 'self is not a valid Time'
 assert other.is_valid(), 'self is not a valid Time'
 return self.time_to_int() > other.time_to_int()

duration = Time(minute=132)
print(duration)

assert statements are useful because they distinguish code that deals with normal conditions
from code that checks for errors.

15.9. Glossary
object-oriented language: A language that provides features to support object-oriented
programming, notably user-defined types.

method: A function that is defined inside a class definition and is invoked on instances of that
class.

receiver: The object a method is invoked on.

static method: A method that can be invoked without an object as receiver.

instance method: A method that must be invoked with an object as receiver.

special method: A method that changes the way operators and some functions work with an
object.

operator overloading: The process of using special methods to change the way operators with
with user-defined types.

invariant: A condition that should always be true during the execution of a program.

15.10. Exercises

00:132:00

start.is_after(duration)

AssertionError: self is not a valid Time

15.10.1. Ask a virtual assistant
For more information about static methods, ask a virtual assistant:

“What’s the difference between an instance method and a static method?”

“Why are static methods called static?”

If you ask a virtual assistant to generate a static method, the result will probably begin with
@staticmethod , which is a “decorator” that indicates that it is a static method. Decorators are

not covered in this book, but if you are curious, you can ask a VA for more information.

In this chapter we rewrote several functions as methods. Virtual assistants are generally good at
this kind of code transformation. As an example, paste the following function into a VA and ask
it, “Rewrite this function as a method of the Time class.”

15.10.2. Exercise
In the previous chapter, a series of exercises asked you to write a Date class and several
functions that work with Date objects. Now let’s practice rewriting those functions as methods.

1. Write a definition for a Date class that represents a date – that is, a year, month, and day of
the month.

2. Write an __init__ method that takes year , month , and day as parameters and assigns
the parameters to attributes. Create an object that represents June 22, 1933.

3. Write __str__ method that uses an f-string to format the attributes and returns the result.
If you test it with the Date you created, the result should be 1933-06-22 .

4. Write a method called is_after that takes two Date objects and returns True if the first
comes after the second. Create a second object that represents September 17, 1933, and

This cell tells Jupyter to provide detailed debugging information
when a runtime error occurs. Run it before working on the exercises.

%xmode Verbose

def subtract_time(t1, t2):
 return time_to_int(t1) - time_to_int(t2)

check whether it comes after the first object.

Hint: You might find it useful write a method called to_tuple that returns a tuple that contains
the attributes of a Date object in year-month-day order.

Think Python: 3rd Edition

Copyright 2024 Allen B. Downey

Code license: MIT License

Text license: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

https://allendowney.github.io/ThinkPython/index.html
https://allendowney.com/
https://mit-license.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Classes and Objects
Contents

16.1. Creating a Point

16.2. Creating a Line

16.3. Equivalence and identity

16.4. Creating a Rectangle

16.5. Changing rectangles

16.6. Deep copy

16.7. Polymorphism

16.8. Debugging

16.9. Glossary

16.10. Exercises

You can order print and ebook versions of Think Python 3e from Bookshop.org and Amazon.

At this point we have defined classes and created objects that represent the time of day and the
day of the year. And we’ve defined methods that create, modify, and perform computations with
these objects.

In this chapter we’ll continue our tour of object-oriented programming (OOP) by defining
classes that represent geometric objects, including points, lines, rectangles, and circles. We’ll
write methods that create and modify these objects, and we’ll use the jupyturtle module to
draw them.

I’ll use these classes to demonstrate OOP topics including object identity and equivalence,
shallow and deep copying, and polymorphism.

16.1. Creating a Point
In computer graphics a location on the screen is often represented using a pair of coordinates in
an x - y plane. By convention, the point (0, 0) usually represents the upper-left corner of the

Print to PDF

https://bookshop.org/a/98697/9781098155438
https://www.amazon.com/_/dp/1098155432?smid=ATVPDKIKX0DER&_encoding=UTF8&tag=oreilly20-20&_encoding=UTF8&tag=greenteapre01-20&linkCode=ur2&linkId=e2a529f94920295d27ec8a06e757dc7c&camp=1789&creative=9325

screen, and (x, y) represents the point x units to the right and y units down from the
origin. Compared to the Cartesian coordinate system you might have seen in a math class, the
y axis is upside-down.

There are several ways we might represent a point in Python:

We can store the coordinates separately in two variables, x and y .

We can store the coordinates as elements in a list or tuple.

We can create a new type to represent points as objects.

In object-oriented programming, it would be most idiomatic to create a new type. To do that,
we’ll start with a class definition for Point .

The __init__ method takes the coordinates as parameters and assigns them to attributes x
and y . The __str__ method returns a string representation of the Point .

Now we can instantiate and display a Point object like this.

The following diagram shows the state of the new object.

class Point:
 """Represents a point in 2-D space."""

 def __init__(self, x, y):
 self.x = x
 self.y = y

 def __str__(self):
 return f'Point({self.x}, {self.y})'

start = Point(0, 0)
print(start)

Point(0, 0)

As usual, a programmer-defined type is represented by a box with the name of the type outside
and the attributes inside.

In general, programmer-defined types are mutable, so we can write a method like translate
that takes two numbers, dx and dy , and adds them to the attributes x and y .

This function translates the Point from one location in the plane to another. If we don’t want to
modify an existing Point , we can use copy to copy the original object and then modify the
copy.

We can encapsulate those steps in another method called translated .

In the same way that the built in function sort modifies a list, and the sorted function creates
a new list, now we have a translate method that modifies a Point and a translated method
that creates a new one.

Here’s an example:

%%add_method_to Point

 def translate(self, dx, dy):
 self.x += dx
 self.y += dy

from copy import copy

end1 = copy(start)
end1.translate(300, 0)
print(end1)

Point(300, 0)

%%add_method_to Point

 def translated(self, dx=0, dy=0):
 point = copy(self)
 point.translate(dx, dy)
 return point

In the next section, we’ll use these points to define and draw a line.

16.2. Creating a Line
Now let’s define a class that represents the line segment between two points. As usual, we’ll start
with an __init__ method and a __str__ method.

With those two methods, we can instantiate and display a Line object we’ll use to represent the
x axis.

When we call print and pass line as a parameter, print invokes __str__ on line . The
__str__ method uses an f-string to create a string representation of the line .

The f-string contains two expressions in curly braces, self.p1 and self.p2 . When those
expressions are evaluated, the results are Point objects. Then, when they are converted to
strings, the __str__ method from the Point class gets invoked.

That’s why, when we display a Line , the result contains the string representations of the Point
objects.

end2 = start.translated(0, 150)
print(end2)

Point(0, 150)

class Line:
 def __init__(self, p1, p2):
 self.p1 = p1
 self.p2 = p2

 def __str__(self):
 return f'Line({self.p1}, {self.p2})'

line1 = Line(start, end1)
print(line1)

Line(Point(0, 0), Point(300, 0))

The following object diagram shows the state of this Line object.

String representations and object diagrams are useful for debugging, but the point of this
example is to generate graphics, not text! So we’ll use the jupyturtle module to draw lines on
the screen.

As we did in Chapter 4, we’ll use make_turtle to create a Turtle object and a small canvas
where it can draw. To draw lines, we’ll use two new functions from the jupyturtle module:

jumpto , which takes two coordinates and moves the Turtle to the given location without
drawing a line, and

moveto , which moves the Turtle from its current location to the given location, and draws
a line segment between them.

Here’s how we import them.

And here’s a method that draws a Line .

To show how it’s used, I’ll create a second line that represents the y axis.

from jupyturtle import make_turtle, jumpto, moveto

%%add_method_to Line

 def draw(self):
 jumpto(self.p1.x, self.p1.y)
 moveto(self.p2.x, self.p2.y)

https://allendowney.github.io/ThinkPython/chap04.html#section-turtle-module

And then draw the axes.

As we define and draw more objects, we’ll use these lines again. But first let’s talk about object
equivalence and identity.

16.3. Equivalence and identity
Suppose we create two points with the same coordinates.

If we use the == operator to compare them, we get the default behavior for programmer-
defined types – the result is True only if they are the same object, which they are not.

line2 = Line(start, end2)
print(line2)

Line(Point(0, 0), Point(0, 150))

make_turtle()
line1.draw()
line2.draw()

p1 = Point(200, 100)
p2 = Point(200, 100)

p1 == p2

False

If we want to change that behavior, we can provide a special method called __eq__ that defines
what it means for two Point objects to be equal.

This definition considers two Points to be equal if their attributes are equal. Now when we use
the == operator, it invokes the __eq__ method, which indicates that p1 and p2 are
considered equal.

But the is operator still indicates that they are different objects.

It’s not possible to override the is operator – it always checks whether the objects are identical.
But for programmer-defined types, you can override the == operator so it checks whether the
objects are equivalent. And you can define what equivalent means.

16.4. Creating a Rectangle
Now let’s define a class that represents and draws rectangles. To keep things simple, we’ll
assume that the rectangles are either vertical or horizontal, not at an angle. What attributes do
you think we should use to specify the location and size of a rectangle?

There are at least two possibilities:

You could specify the width and height of the rectangle and the location of one corner.

You could specify two opposing corners.

%%add_method_to Point

def __eq__(self, other):
 return (self.x == other.x) and (self.y == other.y)

p1 == p2

True

p1 is p2

False

At this point it’s hard to say whether either is better than the other, so let’s implement the first
one. Here is the class definition.

As usual, the __init__ method assigns the parameters to attributes and the __str__ returns a
string representation of the object. Now we can instantiate a Rectangle object, using a Point
as the location of the upper-left corner.

The following diagram shows the state of this object.

To draw a rectangle, we’ll use the following method to make four Point objects to represent
the corners.

class Rectangle:
 """Represents a rectangle.

 attributes: width, height, corner.
 """
 def __init__(self, width, height, corner):
 self.width = width
 self.height = height
 self.corner = corner

 def __str__(self):
 return f'Rectangle({self.width}, {self.height}, {self.corner})'

corner = Point(30, 20)
box1 = Rectangle(100, 50, corner)
print(box1)

Rectangle(100, 50, Point(30, 20))

Then we’ll make four Line objects to represent the sides.

Then we’ll draw the sides.

Here’s an example.

The figure includes two lines to represent the axes.

%%add_method_to Rectangle

 def make_points(self):
 p1 = self.corner
 p2 = p1.translated(self.width, 0)
 p3 = p2.translated(0, self.height)
 p4 = p3.translated(-self.width, 0)
 return p1, p2, p3, p4

%%add_method_to Rectangle

 def make_lines(self):
 p1, p2, p3, p4 = self.make_points()
 return Line(p1, p2), Line(p2, p3), Line(p3, p4), Line(p4, p1)

%%add_method_to Rectangle

 def draw(self):
 lines = self.make_lines()
 for line in lines:
 line.draw()

make_turtle()
line1.draw()
line2.draw()
box1.draw()

16.5. Changing rectangles
Now let’s consider two methods that modify rectangles, grow and translate . We’ll see that
grow works as expected, but translate has a subtle bug. See if you can figure it out before I

explain.

grow takes two numbers, dwidth and dheight , and adds them to the width and height
attributes of the rectangle.

Here’s an example that demonstrates the effect by making a copy of box1 and invoking grow
on the copy.

If we draw box1 and box2 , we can confirm that grow works as expected.

%%add_method_to Rectangle

 def grow(self, dwidth, dheight):
 self.width += dwidth
 self.height += dheight

box2 = copy(box1)
box2.grow(60, 40)
print(box2)

Rectangle(160, 90, Point(30, 20))

make_turtle()
line1.draw()
line2.draw()
box1.draw()
box2.draw()

Now let’s see about translate . It takes two numbers, dx and dy , and moves the rectangle the
given distances in the x and y directions.

To demonstrate the effect, we’ll translate box2 to the right and down.

Now let’s see what happens if we draw box1 and box2 again.

It looks like both rectangles moved, which is not what we intended! The next section explains
what went wrong.

16.6. Deep copy
When we use copy to duplicate box1 , it copies the Rectangle object but not the Point
object it contains. So box1 and box2 are different objects, as intended.

%%add_method_to Rectangle

 def translate(self, dx, dy):
 self.corner.translate(dx, dy)

box2.translate(30, 20)
print(box2)

Rectangle(160, 90, Point(60, 40))

make_turtle()
line1.draw()
line2.draw()
box1.draw()
box2.draw()

But their corner attributes refer to the same object.

The following diagram shows the state of these objects.

What copy does is called a shallow copy because it copies the object but not the objects it
contains. As a result, changing the width or height of one Rectangle does not affect the
other, but changing the attributes of the shared Point affects both! This behavior is confusing
and error-prone.

Fortunately, the copy module provides another function, called deepcopy , that copies not only
the object but also the objects it refers to, and the objects they refer to, and so on. This
operation is called a deep copy.

To demonstrate, let’s start with a new Rectangle that contains a new Point .

box1 is box2

False

box1.corner is box2.corner

True

And we’ll make a deep copy.

We can confirm that the two Rectangle objects refer to different Point objects.

Because box3 and box4 are completely separate objects, we can modify one without affecting
the other. To demonstrate, we’ll move box3 and grow box4 .

And we can confirm that the effect is as expected.

corner = Point(20, 20)
box3 = Rectangle(100, 50, corner)
print(box3)

Rectangle(100, 50, Point(20, 20))

from copy import deepcopy

box4 = deepcopy(box3)

box3.corner is box4.corner

False

box3.translate(50, 30)
box4.grow(100, 60)

make_turtle()
line1.draw()
line2.draw()
box3.draw()
box4.draw()

16.7. Polymorphism
In the previous example, we invoked the draw method on two Line objects and two
Rectangle objects. We can do the same thing more concisely by making a list of objects.

The elements of this list are different types, but they all provide a draw method, so we can loop
through the list and invoke draw on each one.

The first and second time through the loop, shape refers to a Line object, so when draw is
invoked, the method that runs is the one defined in the Line class.

The third and fourth time through the loop, shape refers to a Rectangle object, so when draw
is invoked, the method that runs is the one defined in the Rectangle class.

In a sense, each object knows how to draw itself. This feature is called polymorphism. The word
comes from Greek roots that mean “many shaped”. In object-oriented programming,
polymorphism is the ability of different types to provide the same methods, which makes it
possible to perform many computations – like drawing shapes – by invoking the same method
on different types of objects.

As an exercise at the end of this chapter, you’ll define a new class that represents a circle and
provides a draw method. Then you can use polymorphism to draw lines, rectangles, and circles.

shapes = [line1, line2, box3, box4]

make_turtle()

for shape in shapes:
 shape.draw()

16.8. Debugging
In this chapter, we ran into a subtle bug that happened because we created a Point that was
shared by two Rectangle objects, and then we modified the Point . In general, there are two
ways to avoid problems like this: you can avoid sharing objects or you can avoid modifying
them.

To avoid sharing objects, you can use deep copy, as we did in this chapter.

To avoid modifying objects, consider replacing impure functions like translate with pure
functions like translated . For example, here’s a version of translated that creates a new
Point and never modifies its attributes.

Python provides features that make it easier to avoid modifying objects. They are beyond the
scope of this book, but if you are curious, ask a virtual assistant, “How do I make a Python object
immutable?”

Creating a new object takes more time than modifying an existing one, but the difference
seldom matters in practice. Programs that avoid shared objects and impure functions are often
easier to develop, test, and debug – and the best kind of debugging is the kind you don’t have
to do.

16.9. Glossary
shallow copy: A copy operation that does not copy nested objects.

deep copy: A copy operation that also copies nested objects.

polymorphism: The ability of a method or operator to work with multiple types of objects.

16.10. Exercises

 def translated(self, dx=0, dy=0):
 x = self.x + dx
 y = self.y + dy
 return Point(x, y)

16.10.1. Ask a virtual assistant
For all of the following exercises, consider asking a virtual assistant for help. If you do, you’ll
want include as part of the prompt the class definitions for Point , Line , and Rectangle –
otherwise the VA will make a guess about their attributes and functions, and the code it
generates won’t work.

16.10.2. Exercise
Write an __eq__ method for the Line class that returns True if the Line objects refer to
Point objects that are equivalent, in either order.

You can use the following outline to get started.

You can use these examples to test your code.

This example should be True because the Line objects refer to Point objects that are
equivalent, in the same order.

This cell tells Jupyter to provide detailed debugging information
when a runtime error occurs. Run it before working on the exercises.

%xmode Verbose

%%add_method_to Line

def __eq__(self, other):
 return None

start1 = Point(0, 0)
start2 = Point(0, 0)
end = Point(200, 100)

line_a = Line(start1, end)
line_b = Line(start2, end)
line_a == line_b # should be True

Equivalence should always be transitive – that is, if line_a and line_b are equivalent, and
line_a and line_c are equivalent, then line_b and line_c should also be equivalent.

This example should be False because the Line objects refer to Point objects that are not
equivalent.

16.10.3. Exercise
Write a Line method called midpoint that computes the midpoint of a line segment and
returns the result as a Point object.

You can use the following outline to get started.

True

line_c = Line(end, start1)
line_a == line_c # should be True

True

line_b == line_c # should be True

True

line_d = Line(start1, start2)
line_a == line_d # should be False

False

%%add_method_to Line

 def midpoint(self):
 return Point(0, 0)

You can use the following examples to test your code and draw the result.

16.10.4. Exercise
Write a Rectangle method called midpoint that find the point in the center of a rectangle and
returns the result as a Point object.

start = Point(0, 0)
end1 = Point(300, 0)
end2 = Point(0, 150)
line1 = Line(start, end1)
line2 = Line(start, end2)

mid1 = line1.midpoint()
print(mid1)

Point(150.0, 0.0)

mid2 = line2.midpoint()
print(mid2)

Point(0.0, 75.0)

line3 = Line(mid1, mid2)

make_turtle()

for shape in [line1, line2, line3]:
 shape.draw()

You can use the following outline to get started.

You can use the following example to test your code.

16.10.5. Exercise
Write a Rectangle method called make_cross that:

1. Uses make_lines to get a list of Line objects that represent the four sides of the
rectangle.

%%add_method_to Rectangle

 def midpoint(self):
 return Point(0, 0)

corner = Point(30, 20)
rectangle = Rectangle(100, 80, corner)

mid = rectangle.midpoint()
print(mid)

Point(80.0, 60.0)

diagonal = Line(corner, mid)

make_turtle()

for shape in [line1, line2, rectangle, diagonal]:
 shape.draw()

2. Computes the midpoints of the four lines.

3. Makes and returns a list of two Line objects that represent lines connecting opposite
midpoints, forming a cross through the middle of the rectangle.

You can use this outline to get started.

You can use the following example to test your code.

16.10.6. Exercise
Write a definition for a class named Circle with attributes center and radius , where center
is a Point object and radius is a number. Include special methods __init__ and a __str__ ,
and a method called draw that uses jupyturtle functions to draw the circle.

%%add_method_to Rectangle

 def make_diagonals(self):
 return []

corner = Point(30, 20)
rectangle = Rectangle(100, 80, corner)

lines = rectangle.make_cross()

make_turtle()

rectangle.draw()
for line in lines:
 line.draw()

You can use the following function, which is a version of the circle function we wrote in
Chapter 4.

You can use the following example to test your code. We’ll start with a square Rectangle with
width and height 100 .

The following code should create a Circle that fits inside the square.

If everything worked correctly, the following code should draw the circle inside the square
(touching on all four sides).

from jupyturtle import make_turtle, forward, left, right
import math

def draw_circle(radius):
 circumference = 2 * math.pi * radius
 n = 30
 length = circumference / n
 angle = 360 / n
 left(angle / 2)
 for i in range(n):
 forward(length)
 left(angle)

corner = Point(20, 20)
rectangle = Rectangle(100, 100, corner)

center = rectangle.midpoint()
radius = rectangle.height / 2

circle = Circle(center, radius)
print(circle)

Circle(Point(70.0, 70.0), 50.0)

make_turtle(delay=0.01)

rectangle.draw()
circle.draw()

Think Python: 3rd Edition

Copyright 2024 Allen B. Downey

Code license: MIT License

Text license: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

https://allendowney.github.io/ThinkPython/index.html
https://allendowney.com/
https://mit-license.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Inheritance
Contents

17.1. Representing cards

17.2. Card attributes

17.3. Printing cards

17.4. Comparing cards

17.5. Decks

17.6. Printing the deck

17.7. Add, remove, shuffle and sort

17.8. Parents and children

17.9. Specialization

17.10. Debugging

17.11. Glossary

17.12. Exercises

You can order print and ebook versions of Think Python 3e from Bookshop.org and Amazon.

The language feature most often associated with object-oriented programming is inheritance.
Inheritance is the ability to define a new class that is a modified version of an existing class. In
this chapter I demonstrate inheritance using classes that represent playing cards, decks of cards,
and poker hands. If you don’t play poker, don’t worry – I’ll tell you what you need to know.

17.1. Representing cards
There are 52 playing cards in a standard deck – each of them belongs to one of four suits and
one of thirteen ranks. The suits are Spades, Hearts, Diamonds, and Clubs. The ranks are Ace, 2,
3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, and King. Depending on which game you are playing, an Ace
can be higher than King or lower than 2.

https://bookshop.org/a/98697/9781098155438
https://www.amazon.com/_/dp/1098155432?smid=ATVPDKIKX0DER&_encoding=UTF8&tag=oreilly20-20&_encoding=UTF8&tag=greenteapre01-20&linkCode=ur2&linkId=e2a529f94920295d27ec8a06e757dc7c&camp=1789&creative=9325

If we want to define a new object to represent a playing card, it is obvious what the attributes
should be: rank and suit . It is less obvious what type the attributes should be. One possibility
is to use strings like 'Spade' for suits and 'Queen' for ranks. A problem with this
implementation is that it would not be easy to compare cards to see which had a higher rank or
suit.

An alternative is to use integers to encode the ranks and suits. In this context, “encode” means
that we are going to define a mapping between numbers and suits, or between numbers and
ranks. This kind of encoding is not meant to be a secret (that would be “encryption”).

For example, this table shows the suits and the corresponding integer codes:

With this encoding, we can compare suits by comparing their codes.

To encode the ranks, we’ll use the integer 2 to represent the rank 2 , 3 to represent 3 , and
so on up to 10 . The following table shows the codes for the face cards.

And we can use either 1 or 14 to represent an Ace, depending on whether we want it to be
considered lower or higher than the other ranks.

To represent these encodings, we will use two lists of strings, one with the names of the suits
and the other with the names of the ranks.

Suit Code

Spades 3

Hearts 2

Diamonds 1

Clubs 0

Rank Code

Jack 11

Queen 12

King 13

Here’s a definition for a class that represents a playing card, with these lists of strings as class
variables, which are variables defined inside a class definition, but not inside a method.

The first element of rank_names is None because there is no card with rank zero. By including
None as a place-keeper, we get a list with the nice property that the index 2 maps to the

string '2' , and so on.

Class variables are associated with the class, rather than an instance of the class, so we can
access them like this.

We can use suit_names to look up a suit and get the corresponding string.

And rank_names to look up a rank.

class Card:
 """Represents a standard playing card."""

 suit_names = ['Clubs', 'Diamonds', 'Hearts', 'Spades']
 rank_names = [None, 'Ace', '2', '3', '4', '5', '6', '7',
 '8', '9', '10', 'Jack', 'Queen', 'King', 'Ace']

Card.suit_names

['Clubs', 'Diamonds', 'Hearts', 'Spades']

Card.suit_names[0]

'Clubs'

Card.rank_names[11]

'Jack'

17.2. Card attributes
Here’s an __init__ method for the Card class – it takes suit and rank as parameters and
assigns them to attributes with the same names.

Now we can create a Card object like this.

We can use the new instance to access the attributes.

It is also legal to use the instance to access the class variables.

But if you use the class, it is clearer that they are class variables, not attributes.

17.3. Printing cards
Here’s a __str__ method for Card objects.

%%add_method_to Card

 def __init__(self, suit, rank):
 self.suit = suit
 self.rank = rank

queen = Card(1, 12)

queen.suit, queen.rank

(1, 12)

queen.suit_names

['Clubs', 'Diamonds', 'Hearts', 'Spades']

When we print a Card , Python calls the __str__ method to get a human-readable
representation of the card.

The following is a diagram of the Card class object and the Card instance. Card is a class
object, so its type is type . queen is an instance of Card , so its type is Card . To save space, I
didn’t draw the contents of suit_names and rank_names .

Every Card instance has its own suit and rank attributes, but there is only one Card class
object, and only one copy of the class variables suit_names and rank_names .

17.4. Comparing cards
Suppose we create a second Card object with the same suit and rank.

%%add_method_to Card

 def __str__(self):
 rank_name = Card.rank_names[self.rank]
 suit_name = Card.suit_names[self.suit]
 return f'{rank_name} of {suit_name}'

print(queen)

Queen of Diamonds

queen2 = Card(1, 12)
print(queen2)

If we use the == operator to compare them, it checks whether queen and queen2 refer to the
same object.

They don’t, so it returns False . We can change this behavior by defining the special method
__eq__ .

__eq__ takes two Card objects as parameters and returns True if they have the same suit and
rank, even if they are not the same object. In other words, it checks whether they are equivalent,
even if they are not identical.

When we use the == operator with Card objects, Python calls the __eq__ method.

As a second test, let’s create a card with the same suit and a different rank.

We can confirm that queen and six are not equivalent.

Queen of Diamonds

queen == queen2

False

%%add_method_to Card

 def __eq__(self, other):
 return self.suit == other.suit and self.rank == other.rank

queen == queen2

True

six = Card(1, 6)
print(six)

6 of Diamonds

If we use the != operator, Python invokes a special method called __ne__ , if it exists.
Otherwise it invokes __eq__ and inverts the result – so if __eq__ returns True , the result of
the != operator is False .

Now suppose we want to compare two cards to see which is bigger. If we use one of the
relational operators, we get a TypeError .

To change the behavior of the < operator, we can define a special method called __lt__ ,
which is short for “less than”. For the sake of this example, let’s assume that suit is more
important than rank – so all Spades outrank all Hearts, which outrank all Diamonds, and so on.
If two cards have the same suit, the one with the higher rank wins.

To implement this logic, we’ll use the following method, which returns a tuple containing a
card’s suit and rank, in that order.

queen == six

False

queen != queen2

False

queen != six

True

queen < queen2

TypeError: '<' not supported between instances of 'Card' and 'Card'

We can use this method to write __lt__ .

Tuple comparison compares the first elements from each tuple, which represent the suits. If
they are the same, it compares the second elements, which represent the ranks.

Now if we use the < operator, it invokes the __lt__ method.

If we use the > operator, it invokes a special method called __gt__ , if it exists. Otherwise it
invokes __lt__ with the arguments in the opposite order.

Finally, if we use the <= operator, it invokes a special method called __le__ .

%%add_method_to Card

 def to_tuple(self):
 return (self.suit, self.rank)

%%add_method_to Card

 def __lt__(self, other):
 return self.to_tuple() < other.to_tuple()

six < queen

True

queen < queen2

False

queen > queen2

False

So we can check whether one card is less than or equal to another.

If we use the >= operator, it uses __ge__ if it exists. Otherwise, it invokes __le__ with the
arguments in the opposite order.

As we have defined them, these methods are complete in the sense that we can compare any
two Card objects, and consistent in the sense that results from different operators don’t
contradict each other. With these two properties, we can say that Card objects are totally
ordered. And that means, as we’ll see soon, that they can be sorted.

17.5. Decks
Now that we have objects that represent cards, let’s define objects that represent decks. The
following is a class definition for Deck with an __init__ method takes a list of Card objects
as a parameter and assigns it to an attribute called cards .

%%add_method_to Card

 def __le__(self, other):
 return self.to_tuple() <= other.to_tuple()

queen <= queen2

True

queen <= six

False

queen >= six

True

To create a list that contains the 52 cards in a standard deck, we’ll use the following static
method.

In make_cards , the outer loop enumerates the suits from 0 to 3 . The inner loop enumerates
the ranks from 2 to 14 – where 14 represents an Ace that outranks a King. Each iteration
creates a new Card with the current suit and rank, and appends it to cards .

Here’s how we make a list of cards and a Deck object that contains it.

It contains 52 cards, as intended.

17.6. Printing the deck
Here is a __str__ method for Deck .

class Deck:

 def __init__(self, cards):
 self.cards = cards

%%add_method_to Deck

 def make_cards():
 cards = []
 for suit in range(4):
 for rank in range(2, 15):
 card = Card(suit, rank)
 cards.append(card)
 return cards

cards = Deck.make_cards()
deck = Deck(cards)
len(deck.cards)

52

This method demonstrates an efficient way to accumulate a large string – building a list of
strings and then using the string method join .

We’ll test this method with a deck that only contains two cards.

If we call str , it invokes __str__ .

When Jupyter displays a string, it shows the “representational” form of the string, which
represents a newline with the sequence \n .

However, if we print the result, Jupyter shows the “printable” form of the string, which prints the
newline as whitespace.

So the cards appear on separate lines.

%%add_method_to Deck

 def __str__(self):
 res = []
 for card in self.cards:
 res.append(str(card))
 return '\n'.join(res)

small_deck = Deck([queen, six])

str(small_deck)

'Queen of Diamonds\n6 of Diamonds'

print(small_deck)

Queen of Diamonds
6 of Diamonds

17.7. Add, remove, shuffle and sort
To deal cards, we would like a method that removes a card from the deck and returns it. The list
method pop provides a convenient way to do that.

Here’s how we use it.

We can confirm that there are 51 cards left in the deck.

To add a card, we can use the list method append .

As an example, we can put back the card we just popped.

%%add_method_to Deck

 def take_card(self):
 return self.cards.pop()

card = deck.take_card()
print(card)

Ace of Spades

len(deck.cards)

51

%%add_method_to Deck

 def put_card(self, card):
 self.cards.append(card)

deck.put_card(card)
len(deck.cards)

52

To shuffle the deck, we can use the shuffle function from the random module:

If we shuffle the deck and print the first few cards, we can see that they are in no apparent
order.

To sort the cards, we can use the list method sort , which sorts the elements “in place” – that is,
it modifies the list rather than creating a new list.

When we invoke sort , it uses the __lt__ method to compare cards.

If we print the first few cards, we can confirm that they are in increasing order.

import random

%%add_method_to Deck

 def shuffle(self):
 random.shuffle(self.cards)

deck.shuffle()
for card in deck.cards[:4]:
 print(card)

2 of Diamonds
4 of Hearts
5 of Clubs
8 of Diamonds

%%add_method_to Deck

 def sort(self):
 self.cards.sort()

deck.sort()

for card in deck.cards[:4]:
 print(card)

In this example, Deck.sort doesn’t do anything other than invoke list.sort . Passing along
responsibility like this is called delegation.

17.8. Parents and children
Inheritance is the ability to define a new class that is a modified version of an existing class. As
an example, let’s say we want a class to represent a “hand”, that is, the cards held by one player.

A hand is similar to a deck – both are made up of a collection of cards, and both require
operations like adding and removing cards.

A hand is also different from a deck – there are operations we want for hands that don’t
make sense for a deck. For example, in poker we might compare two hands to see which
one wins. In bridge, we might compute a score for a hand in order to make a bid.

This relationship between classes – where one is a specialized version of another – lends itself to
inheritance.

To define a new class that is based on an existing class, we put the name of the existing class in
parentheses.

This definition indicates that Hand inherits from Deck , which means that Hand objects can
access methods defined in Deck , like take_card and put_card .

Hand also inherits __init__ from Deck , but if we define __init__ in the Hand class, it
overrides the one in the Deck class.

2 of Clubs
3 of Clubs
4 of Clubs
5 of Clubs

class Hand(Deck):
 """Represents a hand of playing cards."""

This version of __init__ takes an optional string as a parameter, and always starts with an
empty list of cards. When we create a Hand , Python invokes this method, not the one in Deck
– which we can confirm by checking that the result has a label attribute.

To deal a card, we can use take_card to remove a card from a Deck , and put_card to add the
card to a Hand .

Let’s encapsulate this code in a Deck method called move_cards .

This method is polymorphic – that is, it works with more than one type: self and other can
be either a Hand or a Deck . So we can use this method to deal a card from Deck to a Hand ,
from one Hand to another, or from a Hand back to a Deck .

%%add_method_to Hand

 def __init__(self, label=''):
 self.label = label
 self.cards = []

hand = Hand('player 1')
hand.label

'player 1'

deck = Deck(cards)
card = deck.take_card()
hand.put_card(card)
print(hand)

Ace of Spades

%%add_method_to Deck

 def move_cards(self, other, num):
 for i in range(num):
 card = self.take_card()
 other.put_card(card)

When a new class inherits from an existing one, the existing one is called the parent and the
new class is called the child. In general:

Instances of the child class should have all of the attributes of the parent class, but they can
have additional attributes.

The child class should have all of the methods of the parent class, but it can have additional
methods.

If a child class overrides a method from the parent class, the new method should take the
same parameters and return a compatible result.

This set of rules is called the “Liskov substitution principle” after computer scientist Barbara
Liskov.

If you follow these rules, any function or method designed to work with an instance of a parent
class, like a Deck , will also work with instances of a child class, like Hand . If you violate these
rules, your code will collapse like a house of cards (sorry).

17.9. Specialization
Let’s make a class called BridgeHand that represents a hand in bridge – a widely played card
game. We’ll inherit from Hand and add a new method called high_card_point_count that
evaluates a hand using a “high card point” method, which adds up points for the high cards in
the hand.

Here’s a class definition that contains as a class variable a dictionary that maps from card names
to their point values.

Given the rank of a card, like 12 , we can use Card.rank_names to get the string representation
of the rank, and then use hcp_dict to get its score.

class BridgeHand(Hand):
 """Represents a bridge hand."""

 hcp_dict = {
 'Ace': 4,
 'King': 3,
 'Queen': 2,
 'Jack': 1,
 }

The following method loops through the cards in a BridgeHand and adds up their scores.

To test it, we’ll deal a hand with five cards – a bridge hand usually has thirteen, but it’s easier to
test code with small examples.

And here is the total score for the King and Queen.

rank = 12
rank_name = Card.rank_names[rank]
score = BridgeHand.hcp_dict.get(rank_name, 0)
rank_name, score

('Queen', 2)

%%add_method_to BridgeHand

 def high_card_point_count(self):
 count = 0
 for card in self.cards:
 rank_name = Card.rank_names[card.rank]
 count += BridgeHand.hcp_dict.get(rank_name, 0)
 return count

hand = BridgeHand('player 2')

deck.shuffle()
deck.move_cards(hand, 5)
print(hand)

4 of Diamonds
King of Hearts
10 of Hearts
10 of Clubs
Queen of Diamonds

hand.high_card_point_count()

5

BridgeHand inherits the variables and methods of Hand and adds a class variable and a
method that are specific to bridge. This way of using inheritance is called specialization
because it defines a new class that is specialized for a particular use, like playing bridge.

17.10. Debugging
Inheritance is a useful feature. Some programs that would be repetitive without inheritance can
be written more concisely with it. Also, inheritance can facilitate code reuse, since you can
customize the behavior of a parent class without having to modify it. In some cases, the
inheritance structure reflects the natural structure of the problem, which makes the design
easier to understand.

On the other hand, inheritance can make programs difficult to read. When a method is invoked,
it is sometimes not clear where to find its definition – the relevant code may be spread across
several modules.

Any time you are unsure about the flow of execution through your program, the simplest
solution is to add print statements at the beginning of the relevant methods. If Deck.shuffle
prints a message that says something like Running Deck.shuffle , then as the program runs it
traces the flow of execution.

As an alternative, you could use the following function, which takes an object and a method
name (as a string) and returns the class that provides the definition of the method.

find_defining_class uses the mro method to get the list of class objects (types) that will be
searched for methods. “MRO” stands for “method resolution order”, which is the sequence of
classes Python searches to “resolve” a method name – that is, to find the function object the
name refers to.

As an example, let’s instantiate a BridgeHand and then find the defining class of shuffle .

def find_defining_class(obj, method_name):
 """Find the class where the given method is defined."""
 for typ in type(obj).mro():
 if method_name in vars(typ):
 return typ
 return f'Method {method_name} not found.'

The shuffle method for the BridgeHand object is the one in Deck .

17.11. Glossary
inheritance: The ability to define a new class that is a modified version of a previously defined
class.

encode: To represent one set of values using another set of values by constructing a mapping
between them.

class variable: A variable defined inside a class definition, but not inside any method.

totally ordered: A set of objects is totally ordered if we can compare any two elements and the
results are consistent.

delegation: When one method passes responsibility to another method to do most or all of the
work.

parent class: A class that is inherited from.

child class: A class that inherits from another class.

specialization: A way of using inheritance to create a new class that is a specialized version of
an existing class.

17.12. Exercises

hand = BridgeHand('player 3')
find_defining_class(hand, 'shuffle')

__main__.Deck

This cell tells Jupyter to provide detailed debugging information
when a runtime error occurs. Run it before working on the exercises.

%xmode Verbose

17.12.1. Ask a Virtual Assistant
When it goes well, object-oriented programming can make programs more readable, testable,
and reusable. But it can also make programs complicated and hard to maintain. As a result,
OOP is a topic of controversy – some people love it, and some people don’t.

To learn more about the topic, ask a virtual assistant:

What are some pros and cons of object-oriented programming?

What does it mean when people say “favor composition over inheritance”?

What is the Liskov substitution principle?

Is Python an object-oriented language?

What are the requirements for a set to be totally ordered?

And as always, consider using a virtual assistant to help with the following exercises.

17.12.2. Exercise
In contract bridge, a “trick” is a round of play in which each of four players plays one card. To
represent those cards, we’ll define a class that inherits from Deck .

As an example, consider this trick, where the first player leads with the 3 of Diamonds, which
means that Diamonds are the “led suit”. The second and third players “follow suit”, which means
they play a card with the led suit. The fourth player plays a card of a different suit, which means
they cannot win the trick. So the winner of this trick is the third player, because they played the
highest card in the led suit.

Exception reporting mode: Verbose

class Trick(Deck):
 """Represents a trick in contract bridge."""

Write a Trick method called find_winner that loops through the cards in the Trick and
returns the index of the card that wins. In the previous example, the index of the winning card is
2 .

17.12.3. Exercise
The next few exercises ask to you write functions that classify poker hands. If you are not
familiar with poker, I’ll explain what you need to know. We’ll use the following class to represent
poker hands.

PokerHand provides two methods that will help with the exercises.

get_suit_counts loops through the cards in the PokerHand , counts the number of cards
in each suit, and returns a dictionary that maps from each suit code to the number of times

cards = [Card(1, 3),
 Card(1, 10),
 Card(1, 12),
 Card(2, 13)]
trick = Trick(cards)
print(trick)

3 of Diamonds
10 of Diamonds
Queen of Diamonds
King of Hearts

class PokerHand(Hand):
 """Represents a poker hand."""

 def get_suit_counts(self):
 counter = {}
 for card in self.cards:
 key = card.suit
 counter[key] = counter.get(key, 0) + 1
 return counter

 def get_rank_counts(self):
 counter = {}
 for card in self.cards:
 key = card.rank
 counter[key] = counter.get(key, 0) + 1
 return counter

it appears.
get_rank_counts does the same thing with the ranks of the cards, returning a dictionary

that maps from each rank code to the number of times it appears.

All of the exercises that follow can be done using only the Python features we have learned so
far, but some of them are more difficult than most of the previous exercises. I encourage you to
ask a virtual assistant for help.

For problems like this, it often works well to ask for general advice about strategies and
algorithms. Then you can either write the code yourself or ask for code. If you ask for code, you
might want to provide the relevant class definitions as part of the prompt.

As a first exercise, we’ll write a method called has_flush that checks whether a hand has a
“flush” – that is, whether it contains at least five cards of the same suit.

In most varieties of poker, a hand contains either five or seven cards, but there are some exotic
variations where a hand contains other numbers of cards. But regardless of how many cards
there are in a hand, the only ones that count are the five that make the best hand.

17.12.4. Exercise
Write a method called has_straight that checks whether a hand contains a straight, which is a
set of five cards with consecutive ranks. For example, if a hand contains ranks 5 , 6 , 7 , 8 , and
9 , it contains a straight.

An Ace can come before a two or after a King, so Ace , 2 , 3 , 4 , 5 is a straight and so is 10 ,
Jack , Queen , King , Ace . But a straight cannot “wrap around”, so King , Ace , 2 , 3 , 4 is

not a straight.

17.12.5. Exercise
A hand has a straight flush if it contains a set of five cards that are both a straight and a flush –
that is, five cards of the same suit with consecutive ranks. Write a PokerHand method that
checks whether a hand has a straight flush.

17.12.6. Exercise
A poker hand has a pair if it contains two or more cards with the same rank. Write a PokerHand
method that checks whether a hand contains a pair.

To test your method, here’s a hand that has a pair.

17.12.7. Exercise
A hand has a full house if it contains three cards of one rank and two cards of another rank.
Write a PokerHand method that checks whether a hand has a full house.

pair = deepcopy(bad_hand)
pair.put_card(Card(1, 2))
print(pair)

2 of Clubs
3 of Clubs
4 of Hearts
5 of Spades
7 of Clubs
2 of Diamonds

pair.has_pair() # should return True

True

bad_hand.has_pair() # should return False

False

good_hand.has_pair() # should return False

False

17.12.8. Exercise
This exercise is a cautionary tale about a common error that can be difficult to debug. Consider
the following class definition.

__init__ takes two parameters: name is required, but contents is optional – if it’s not
provided, the default value is an empty list.

__str__ returns a string representation of the object that includes the name and the contents
of the pouch.

put_in_pouch takes any object and appends it to contents .

Now let’s see how this class works. We’ll create two Kangaroo objects with the names 'Kanga'
and 'Roo' .

class Kangaroo:
 """A Kangaroo is a marsupial."""

 def __init__(self, name, contents=[]):
 """Initialize the pouch contents.

 name: string
 contents: initial pouch contents.
 """
 self.name = name
 self.contents = contents

 def __str__(self):
 """Return a string representaion of this Kangaroo.
 """
 t = [self.name + ' has pouch contents:']
 for obj in self.contents:
 s = ' ' + object.__str__(obj)
 t.append(s)
 return '\n'.join(t)

 def put_in_pouch(self, item):
 """Adds a new item to the pouch contents.

 item: object to be added
 """
 self.contents.append(item)

kanga = Kangaroo('Kanga')
roo = Kangaroo('Roo')

To Kanga’s pouch we’ll add two strings and Roo.

If we print kanga , it seems like everything worked.

But what happens if we print roo ?

Roo’s pouch contains the same contents as Kanga’s, including a reference to roo !

See if you can figure out what went wrong. Then ask a virtual assistant, “What’s wrong with the
following program?” and paste in the definition of Kangaroo .

Think Python: 3rd Edition

Copyright 2024 Allen B. Downey

Code license: MIT License

Text license: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

kanga.put_in_pouch('wallet')
kanga.put_in_pouch('car keys')
kanga.put_in_pouch(roo)

print(kanga)

Kanga has pouch contents:
 'wallet'
 'car keys'
 <__main__.Kangaroo object at 0x7f44f9b4e500>

print(roo)

Roo has pouch contents:
 'wallet'
 'car keys'
 <__main__.Kangaroo object at 0x7f44f9b4e500>

https://allendowney.github.io/ThinkPython/index.html
https://allendowney.com/
https://mit-license.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Python Extras
Contents

18.1. Sets

18.2. Counters

18.3. defaultdict

18.4. Conditional expressions

18.5. List comprehensions

18.6. any and all

18.7. Named tuples

18.8. Packing keyword arguments

18.9. Debugging

18.10. Glossary

18.11. Exercises

You can order print and ebook versions of Think Python 3e from Bookshop.org and Amazon.

One of my goals for this book has been to teach you as little Python as possible. When there
were two ways to do something, I picked one and avoided mentioning the other. Or sometimes
I put the second one into an exercise.

Now I want to go back for some of the good bits that got left behind. Python provides a
number of features that are not really necessary – you can write good code without them – but
with them you can write code that’s more concise, readable, or efficient, and sometimes all
three.

18.1. Sets
Python provides a class called set that represents a collection of unique elements. To create an
empty set, we can use the class object like a function.

https://bookshop.org/a/98697/9781098155438
https://www.amazon.com/_/dp/1098155432?smid=ATVPDKIKX0DER&_encoding=UTF8&tag=oreilly20-20&_encoding=UTF8&tag=greenteapre01-20&linkCode=ur2&linkId=e2a529f94920295d27ec8a06e757dc7c&camp=1789&creative=9325

We can use the add method to add elements.

Or we can pass any kind of sequence to set .

An element can only appear once in a set . If you add an element that’s already there, it has no
effect.

Or if you create a set with a sequence that contains duplicates, the result contains only unique
elements.

s1 = set()
s1

set()

s1.add('a')
s1.add('b')
s1

{'a', 'b'}

s2 = set('acd')
s2

{'a', 'c', 'd'}

s1.add('a')
s1

{'a', 'b'}

set('banana')

{'a', 'b', 'n'}

Some of the exercises in this book can be done concisely and efficiently with sets. For example,
here is a solution to an exercise in Chapter 11 that uses a dictionary to check whether there are
any duplicate elements in a sequence.

This version adds the element of t as keys in a dictionary, and then checks whether there are
fewer keys than elements. Using sets, we can write the same function like this.

An element can only appear in a set once, so if an element in t appears more than once, the
set will be smaller than t . If there are no duplicates, the set will be the same size as t .

set objects provide methods that perform set operations. For example, union computes the
union of two sets, which is a new set that contains all elements that appear in either set.

Some arithmetic operators work with sets. For example, the - operator performs set
subtraction – the result is a new set that contains all elements from the first set that are not in
the second set.

In Chapter 12 we used dictionaries to find the words that appear in a document but not in a
word list. We used the following function, which takes two dictionaries and returns a new

def has_duplicates(t):
 d = {}
 for x in t:
 d[x] = True
 return len(d) < len(t)

def has_duplicates(t):
 s = set(t)
 return len(s) < len(t)

s1.union(s2)

{'a', 'b', 'c', 'd'}

s1 - s2

{'b'}

https://allendowney.github.io/ThinkPython/chap12.html#section-dictionary-subtraction

dictionary that contains only the keys from the first that don’t appear in the second.

With sets, we don’t have to write this function ourselves. If word_counter is a dictionary that
contains the unique words in the document and word_list is a list of valid words, we can
compute the set difference like this.

The result is a set that contains the words in the document that don’t appear in the word list.

The relational operators work with sets. For example, <= checks whether one set is a subset of
another, including the possibility that they are equal.

With these operators, we can use sets to do some of the exercises in Chapter 7. For example,
here’s a version of uses_only that uses a loop.

uses_only checks whether all letters in word are in available . With sets, we can rewrite it like
this.

def subtract(d1, d2):
 res = {}
 for key in d1:
 if key not in d2:
 res[key] = d1[key]
 return res

set(word_counter) - set(word_list)

set('ab') <= set('abc')

True

def uses_only(word, available):
 for letter in word:
 if letter not in available:
 return False
 return True

def uses_only(word, available):
 return set(word) <= set(available)

If the letters in word are a subset of the letters in available , that means that word uses only
letters in available .

18.2. Counters
A Counter is like a set, except that if an element appears more than once, the Counter keeps
track of how many times it appears. If you are familiar with the mathematical idea of a
“multiset”, a Counter is a natural way to represent a multiset.

The Counter class is defined in a module called collections , so you have to import it. Then
you can use the class object as a function and pass as an argument a string, list, or any other
kind of sequence.

A Counter object is like a dictionary that maps from each key to the number of times it
appears. As in dictionaries, the keys have to be hashable.

Unlike dictionaries, Counter objects don’t raise an exception if you access an element that
doesn’t appear. Instead, they return 0 .

from collections import Counter

counter = Counter('banana')
counter

Counter({'a': 3, 'n': 2, 'b': 1})

from collections import Counter

t = (1, 1, 1, 2, 2, 3)
counter = Counter(t)
counter

Counter({1: 3, 2: 2, 3: 1})

counter['d']

We can use Counter objects to solve one of the exercises from Chapter 10, which asks for a
function that takes two words and checks whether they are anagrams – that is, whether the
letters from one can be rearranged to spell the other.

Here’s a solution using Counter objects.

If two words are anagrams, they contain the same letters with the same counts, so their
Counter objects are equivalent.

Counter provides a method called most_common that returns a list of value-frequency pairs,
sorted from most common to least.

They also provide methods and operators to perform set-like operations, including addition,
subtraction, union and intersection. For example, the + operator combines two Counter
objects and creates a new Counter that contains the keys from both and the sums of the
counts.

We can test it by making a Counter with the letters from 'bans' and adding it to the letters
from 'banana' .

You’ll have a chance to explore other Counter operations in the exercises at the end of this
chapter.

0

def is_anagram(word1, word2):
 return Counter(word1) == Counter(word2)

counter.most_common()

[(1, 3), (2, 2), (3, 1)]

counter2 = Counter('bans')
counter + counter2

Counter({1: 3, 2: 2, 3: 1, 'b': 1, 'a': 1, 'n': 1, 's': 1})

18.3. defaultdict
The collections module also provides defaultdict , which is like a dictionary except that if
you access a key that doesn’t exist, it generates a new value automatically.

When you create a defaultdict , you provide a function that’s used to create new values. A
function that create objects is sometimes called a factory. The built-in functions that create
lists, sets, and other types can be used as factories.

For example, here’s a defaultdict that creates a new list when needed.

Notice that the argument is list , which is a class object, not list() , which is a function call
that creates a new list. The factory function doesn’t get called unless we access a key that
doesn’t exist.

The new list, which we’re calling t , is also added to the dictionary. So if we modify t , the
change appears in d :

If you are making a dictionary of lists, you can often write simpler code using defaultdict .

from collections import defaultdict

d = defaultdict(list)
d

defaultdict(list, {})

t = d['new key']
t

[]

t.append('new value')
d['new key']

['new value']

In one of the exercises in Chapter 11, I made a dictionary that maps from a sorted string of
letters to the list of words that can be spelled with those letters. For example, the string 'opst'
maps to the list ['opts', 'post', 'pots', 'spot', 'stop', 'tops'] . Here’s the original code.

And here’s a simpler version using a defaultdict .

In the exercises at the end of the chapter, you’ll have a chance to practice using defaultdict
objects.

18.4. Conditional expressions
Conditional statements are often used to choose one of two values, like this:

def all_anagrams(filename):
 d = {}
 for line in open(filename):
 word = line.strip().lower()
 t = signature(word)
 if t not in d:
 d[t] = [word]
 else:
 d[t].append(word)
 return d

def all_anagrams(filename):
 d = defaultdict(list)
 for line in open(filename):
 word = line.strip().lower()
 t = signature(word)
 d[t].append(word)
 return d

from collections import defaultdict

d = defaultdict(list)
key = ('into', 'the')
d[key].append('woods')
d[key]

['woods']

https://allendowney.github.io/ThinkPython/chap11.html#chapter-tuples

This statement checks whether x is positive. If so, it computes its logarithm. If not, math.log
would raise a ValueError. To avoid stopping the program, we generate a NaN , which is a special
floating-point value that represents “Not a Number”.

We can write this statement more concisely using a conditional expression.

You can almost read this line like English: “ y gets log- x if x is greater than 0; otherwise it
gets NaN ”.

Recursive functions can sometimes be written concisely using conditional expressions. For
example, here is a version of factorial with a conditional statement.

And here’s a version with a conditional expression.

Another use of conditional expressions is handling optional arguments. For example, here is
class definition with an __init__ method that uses a conditional statement to check a
parameter with a default value.

if x > 0:
 y = math.log(x)
else:
 y = float('nan')

y = math.log(x) if x > 0 else float('nan')

def factorial(n):
 if n == 0:
 return 1
 else:
 return n * factorial(n-1)

def factorial(n):
 return 1 if n == 0 else n * factorial(n-1)

class Kangaroo:
 def __init__(self, name, contents=None):
 self.name = name
 if contents is None:
 contents = []
 self.contents = contents

Here’s a version that uses a conditional expression.

In general, you can replace a conditional statement with a conditional expression if both
branches contain a single expression and no statements.

18.5. List comprehensions
In previous chapters, we’ve seen a few examples where we start with an empty list and add
elements, one at a time, using the append method. For example, suppose we have a string that
contains the title of a movie, and we want to capitalize all of the words.

We can split it into a list of strings, loop through the strings, capitalize them, and append them
to a list.

We can do the same thing more concisely using a list comprehension:

def __init__(self, name, contents=None):
 self.name = name
 self.contents = [] if contents is None else contents

title = 'monty python and the holy grail'

t = []
for word in title.split():
 t.append(word.capitalize())

' '.join(t)

'Monty Python And The Holy Grail'

t = [word.capitalize() for word in title.split()]

' '.join(t)

'Monty Python And The Holy Grail'

The bracket operators indicate that we are constructing a new list. The expression inside the
brackets specifies the elements of the list, and the for clause indicates what sequence we are
looping through.

The syntax of a list comprehension might seem strange, because the loop variable – word in
this example – appears in the expression before we get to its definition. But you get used to it.

As another example, in Chapter 9 we used this loop to read words from a file and append them
to a list.

Here’s how we can write that as a list comprehension.

A list comprehension can also have an if clause that determines which elements are included
in the list. For example, here’s a for loop we used in Chapter 10 to make a list of only the
words in word_list that are palindromes.

Here’s how we can do the same thing with an list comprehension.

When a list comprehension is used as an argument to a function, we can often omit the
brackets. For example, suppose we want to add up for values of from 0 to 9. We can use
a list comprehension like this.

word_list = []

for line in open('words.txt'):
 word = line.strip()
 word_list.append(word)

word_list = [line.strip() for line in open('words.txt')]

palindromes = []

for word in word_list:
 if is_palindrome(word):
 palindromes.append(word)

palindromes = [word for word in word_list if is_palindrome(word)]

1/2n
n

https://allendowney.github.io/ThinkPython/chap09.html#section-word-list
https://allendowney.github.io/ThinkPython/chap10.html#section-palindrome-list

Or we can leave out the brackets like this.

In this example, the argument is technically a generator expression, not a list comprehension,
and it never actually makes a list. But other than that, the behavior is the same.

List comprehensions and generator expressions are concise and easy to read, at least for simple
expressions. And they are usually faster than the equivalent for loops, sometimes much faster.
So if you are mad at me for not mentioning them earlier, I understand.

But, in my defense, list comprehensions are harder to debug because you can’t put a print
statement inside the loop. I suggest you use them only if the computation is simple enough
that you are likely to get it right the first time. Or consider writing and debugging a for loop
and then converting it to a list comprehension.

18.6. any and all
Python provides a built-in function, any , that takes a sequence of boolean values and returns
True if any of the values are True .

any is often used with generator expressions.

sum([1/2**n for n in range(10)])

1.998046875

sum(1/2**n for n in range(10))

1.998046875

any([False, False, True])

True

That example isn’t very useful because it does the same thing as the in operator. But we could
use any to write concise solutions to some of the exercises in Chapter 7. For example, we can
write uses_none like this.

This function loops through the letters in word and checks whether any of them are in
forbidden . Using any with a generator expression is efficient because it stops immediately if it

finds a True value, so it doesn’t have to loop through the whole sequence.

Python provides another built-in function, all , that returns True if every element of the
sequence is True . We can use it to write a concise version of uses_all .

Expressions using any and all can be concise, efficient, and easy to read.

18.7. Named tuples
The collections module provides a function called namedtuple that can be used to create
simple classes. For example, the Point object in Chapter 16 has only two attributes, x and y .
Here’s how we defined it.

any(letter == 't' for letter in 'monty')

True

def uses_none(word, forbidden):
 """Checks whether a word avoids forbidden letters."""
 return not any(letter in forbidden for letter in word)

def uses_all(word, required):
 """Check whether a word uses all required letters."""
 return all(letter in word for letter in required)

https://allendowney.github.io/ThinkPython/chap07.html#chapter-search
https://allendowney.github.io/ThinkPython/chap16.html#section-create-point

That’s a lot of code to convey a small amount of information. namedtuple provides a more
concise way to define classes like this.

The first argument is the name of the class you want to create. The second is a list of the
attributes Point objects should have. The result is a class object, which is why it is assigned to
a capitalized variable name.

A class created with namedtuple provides an __init__ method that assigns values to the
attributes and a __str__ that displays the object in a readable form. So we can create and
display a Point object like this.

Point also provides an __eq__ method that checks whether two Point objects are equivalent
– that is, whether their attributes are the same.

You can access the elements of a named tuple by name or by index.

class Point:
 """Represents a point in 2-D space."""

 def __init__(self, x, y):
 self.x = x
 self.y = y

 def __str__(self):
 return f'({self.x}, {self.y})'

from collections import namedtuple

Point = namedtuple('Point', ['x', 'y'])

p = Point(1, 2)
p

Point(x=1, y=2)

p == Point(1, 2)

True

You can also treat a named tuple as a tuple, as in this assignment.

But namedtuple objects are immutable. After the attributes are initialized, they can’t be
changed.

namedtuple provides a quick way to define simple classes. The drawback is that simple classes
don’t always stay simple. You might decide later that you want to add methods to a named
tuple. In that case, you can define a new class that inherits from the named tuple.

p.x, p.y

(1, 2)

p[0], p[1]

(1, 2)

x, y = p
x, y

(1, 2)

p[0] = 3

TypeError: 'Point' object does not support item assignment

p.x = 3

AttributeError: can't set attribute

class Pointier(Point):
 """This class inherits from Point"""

Or at that point you could switch to a conventional class definition.

18.8. Packing keyword arguments
In Chapter 11, we wrote a function that packs its arguments into a tuple.

You can call this function with any number of arguments.

But the * operator doesn’t pack keyword arguments. So calling this function with a keyword
argument causes an error.

To pack keyword arguments, we can use the ** operator:

The keyword-packing parameter can have any name, but kwargs is a common choice. The
result is a dictionary that maps from keywords to values.

def mean(*args):
 return sum(args) / len(args)

mean(1, 2, 3)

2.0

mean(1, 2, start=3)

TypeError: mean() got an unexpected keyword argument 'start'

def mean(*args, **kwargs):
 print(kwargs)
 return sum(args) / len(args)

mean(1, 2, start=3)

{'start': 3}

https://allendowney.github.io/ThinkPython/chap11.html#section-argument-pack

In this example, the value of kwargs is printed, but otherwise is has no effect.

But the ** operator can also be used in an argument list to unpack a dictionary. For example,
here’s a version of mean that packs any keyword arguments it gets and then unpacks them as
keyword arguments for sum .

Now if we call mean with start as a keyword argument, it gets passed along to sum, which
uses it as the starting point of the summation. In the following example start=3 adds 3 to
the sum before computing the mean, so the sum is 6 and the result is 3 .

As another example, if we have a dictionary with keys x and y , we can use it with the unpack
operator to create a Point object.

Without the unpack operator, d is treated as a single positional argument, so it gets assigned
to x , and we get a TypeError because there’s no second argument to assign to y .

1.5

def mean(*args, **kwargs):
 return sum(args, **kwargs) / len(args)

mean(1, 2, start=3)

3.0

d = dict(x=1, y=2)
Point(**d)

Point(x=1, y=2)

d = dict(x=1, y=2)
Point(d)

TypeError: Point.__new__() missing 1 required positional argument: 'y'

When you are working with functions that have a large number of keyword arguments, it is
often useful to create and pass around dictionaries that specify frequently used options.

18.9. Debugging
In previous chapters, we used doctest to test functions. For example, here’s a function called
add that takes two numbers and returns their sum. In includes a doctest that checks whether 2
+ 2 is 4 .

This function takes a function object and runs its doctests.

So we can test add like this.

There’s no output, which means all tests passed.

def pack_and_print(**kwargs):
 print(kwargs)

pack_and_print(a=1, b=2)

{'a': 1, 'b': 2}

def add(a, b):
 '''Add two numbers.

 >>> add(2, 2)
 4
 '''
 return a + b

from doctest import run_docstring_examples

def run_doctests(func):
 run_docstring_examples(func, globals(), name=func.__name__)

run_doctests(add)

Python provides another tool for running automated tests, called unittest . It is a little more
complicated to use, but here’s an example.

First we import TestCase , which is a class in the unittest module. To use it, we have to define
a new class that inherits from TestCase and provides at least one test method. The name of
the test method must begin with test and should indicate which function it tests.

In this example, test_add tests the add function by calling it, saving the result, and invoking
assertEqual , which is inherited from TestCase . assertEqual takes two arguments and checks

whether they are equal.

In order to run this test method, we have to run a function in unittest called main and
provide several keyword arguments. The following function shows the details – if you are
curious, you can ask a virtual assistant to explain how it works.

run_unittest does not take TestExample as an argument – instead, it searches for classes that
inherit from TestCase . Then it searches for methods that begin with test and runs them. This
process is called test discovery.

Here’s what happens when we call run_unittest .

from unittest import TestCase

class TestExample(TestCase):

 def test_add(self):
 result = add(2, 2)
 self.assertEqual(result, 4)

import unittest

def run_unittest():
 unittest.main(argv=[''], verbosity=0, exit=False)

run_unittest()

--
Ran 1 test in 0.000s

OK

unittest.main reports the number of tests it ran and the results. In this case OK indicates that
the tests passed.

To see what happens when a test fails, we’ll add an incorrect test method to TestExample .

Here’s what happens when we run the tests.

The report includes the test method that failed and an error message showing where. The
summary indicates that two tests ran and one failed.

In the exercises below, I’ll suggest some prompts you can use to ask a virtual assistant for more
information about unittest .

18.10. Glossary
factory: A function used to create objects, often passed as a parameter to a function.

conditional expression: An expression that uses a conditional to select one of two values.

list comprehension: A concise way to loop through a sequence and create a list.

%%add_method_to TestExample

 def test_add_broken(self):
 result = add(2, 2)
 self.assertEqual(result, 100)

run_unittest()

==
FAIL: test_add_broken (__main__.TestExample)
--
Traceback (most recent call last):
 File "/tmp/ipykernel_1109857/3833266738.py", line 3, in test_add_broken
 self.assertEqual(result, 100)
AssertionError: 4 != 100

--
Ran 2 tests in 0.000s

FAILED (failures=1)

generator expression: Similar to a list comprehension except that it does not create a list.

test discovery: A process used to find and run tests.

18.11. Exercises

18.11.1. Ask a virtual assistant
There are a few topics in this chapter you might want to learn about.

“What are the methods and operators of Python’s set class?”

“What are the methods and operators of Python’s Counter class?”

“What is the difference between a Python list comprehension and a generator expression?”

“When should I use Python’s namedtuple rather than define a new class?”

“What are some uses of packing and unpacking keyword arguments?”

“How does unittest do test discovery?”

“Along with assertEqual , what are the most commonly used methods in
unittest.TestCase ?”

“What are the pros and cons of doctest and unittest ?”

For the following exercises, consider asking a virtual assistant for help, but as always, remember
to test the results.

18.11.2. Exercise
One of the exercises in Chapter 7 asks for a function called uses_none that takes a word and a
string of forbidden letters, and returns True if the word does not use any of the letters. Here’s
a solution.

This cell tells Jupyter to provide detailed debugging information
when a runtime error occurs. Run it before working on the exercises.

%xmode Verbose

Write a version of this function that uses set operations instead of a for loop. Hint: ask a VA,
“How do I compute the intersection of Python sets?”

18.11.3. Exercise
Scrabble is a board game where the objective is to use letter tiles to spell words. For example, if
we have tiles with the letters T , A , B , L , E , we can spell BELT and LATE using a subset of
the tiles – but we can’t spell BEET because we don’t have two E s.

Write a function that takes a string of letters and a word, and checks whether the letters can
spell the word, taking into account how many times each letter appears.

18.11.4. Exercise
In one of the exercises from Chapter 17, my solution to has_straightflush uses the following
method, which partitions a PokerHand into a list of four hands, where each hand contains cards
of the same suit.

Write a simplified version of this function using a defaultdict .

def uses_none(word, forbidden):
 for letter in word.lower():
 if letter in forbidden.lower():
 return False
 return True

 def partition(self):
 """Make a list of four hands, each containing only one suit."""
 hands = []
 for i in range(4):
 hands.append(PokerHand())

 for card in self.cards:
 hands[card.suit].add_card(card)

 return hands

https://allendowney.github.io/ThinkPython/chap17.html#chapter-inheritance

18.11.5. Exercise
Here’s the function from Chapter 11 that computes Fibonacci numbers.

Write a version of this function with a single return statement that use two conditional
expressions, one nested inside the other.

18.11.6. Exercise
The following is a function that computes the binomial coefficient recursively.

Rewrite the body of the function using nested conditional expressions.

This function is not very efficient because it ends up computing the same values over and over.
Make it more efficient by memoizing it, as described in Chapter 10.

def fibonacci(n):
 if n == 0:
 return 0

 if n == 1:
 return 1

 return fibonacci(n-1) + fibonacci(n-2)

def binomial_coeff(n, k):
 """Compute the binomial coefficient "n choose k".

 n: number of trials
 k: number of successes

 returns: int
 """
 if k == 0:
 return 1

 if n == 0:
 return 0

 return binomial_coeff(n-1, k) + binomial_coeff(n-1, k-1)

binomial_coeff(10, 4) # should be 210

https://allendowney.github.io/ThinkPython/chap10.html#section-memos

18.11.7. Exercise
Here’s the __str__ method from the Deck class in Chapter 17.

Write a more concise version of this method with a list comprehension or generator expression.

Think Python: 3rd Edition

Copyright 2024 Allen B. Downey

Code license: MIT License

Text license: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

210

%%add_method_to Deck

 def __str__(self):
 res = []
 for card in self.cards:
 res.append(str(card))
 return '\n'.join(res)

https://allendowney.github.io/ThinkPython/chap17.html#section-print-deck
https://allendowney.github.io/ThinkPython/index.html
https://allendowney.com/
https://mit-license.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Final thoughts
You can order print and ebook versions of Think Python 3e from Bookshop.org and Amazon.

Learning to program is not easy, but if you made it this far, you are off to a good start. Now I
have some suggestions for ways you can keep learning and apply what you have learned.

This book is meant to be a general introduction to programming, so we have not focused on
specific applications. Depending on your interests, there are any number of areas where you can
apply your new skills.

If you are interested in Data Science, there are three books of mine you might like:

Think Stats: Exploratory Data Analysis, O’Reilly Media, 2014.

Think Bayes: Bayesian Statistics in Python, O’Reilly Media, 2021.

Think DSP: Digital Signal Processing in Python, O’Reilly Media, 2016.

If you are interested in physical modeling and complex systems, you might like:

Modeling and Simulation in Python: An Introduction for Scientists and Engineers, No Starch
Press, 2023.

Think Complexity: Complexity Science and Computational Modeling, O’Reilly Media, 2018.

These use NumPy, SciPy, pandas, and other Python libraries for data science and scientific
computing.

This book tries to find a balance between general principles of programming and details of
Python. As a result, it does not include every feature of the Python language. For more about
Python, and good advice about how to use it, I recommend Fluent Python: Clear, Concise, and
Effective Programming, second edition by Luciano Ramalho, O’Reilly Media, 2022.

After an introduction to programming, a common next step is to learn about data structures and
algorithms. I have a work in progress on this topic, called Data Structures and Information
Retrieval in Python. A free electronic version is available from Green Tea Press at
https://greenteapress.com.

Print to PDF

https://bookshop.org/a/98697/9781098155438
https://www.amazon.com/_/dp/1098155432?smid=ATVPDKIKX0DER&_encoding=UTF8&tag=oreilly20-20&_encoding=UTF8&tag=greenteapre01-20&linkCode=ur2&linkId=e2a529f94920295d27ec8a06e757dc7c&camp=1789&creative=9325
https://greenteapress.com/

As you work on more complex programs, you will encounter new challenges. You might find it
helpful to review the sections in this book about debugging. In particular, remember the Six R’s
of debugging from Chapter 12: reading, running, ruminating, rubber-ducking, retreating, and
resting.

This book suggests tools to help with debugging, including the print and repr functions, the
structshape function in Chapter 11 – and the built-in functions isinstance , hasattr , and
vars in Chapter 14.

It also suggests tools for testing programs, including the assert statement, the doctest
module, and the unittest module. Including tests in your programs is one of the best ways to
prevent and detect errors, and save time debugging.

But the best kind of debugging is the kind you don’t have to do. If you use an incremental
development process as described in Chapter 6 – and test as you go – you will make fewer
errors and find them more quickly when you do. Also, remember encapsulation and
generalization from Chapter 4, which is particularly useful when you are developing code in
Jupyter notebooks.

Throughout this book, I’ve suggested ways to use virtual assistants to help you learn, program,
and debug. I hope you are finding these tools useful.

In additional to virtual assistants like ChatGPT, you might also want to use a tool like Copilot that
autocompletes code as you type. I did not recommend using these tools, initially, because they
can be overwhelming for beginners. But you might want to explore them now.

Using AI tools effectively requires some experimentation and reflection to find a flow that works
for you. If you think it’s a nuisance to copy code from ChatGPT to Jupyter, you might prefer
something like Copilot. But the cognitive work you do to compose a prompt and interpret the
response can be as valuable as the code the tool generates, in the same vein as rubber duck
debugging.

As you gain programming experience, you might want to explore other development
environments. I think Jupyter notebooks are a good place to start, but they are relatively new
and not as widely-used as conventional integrated development environments (IDE). For Python,
the most popular IDEs include PyCharm and Spyder – and Thonny, which is often recommended
for beginners. Other IDEs, like Visual Studio Code and Eclipse, work with other programming
languages as well. Or, as a simpler alternative, you can write Python programs using any text
editor you like.

https://allendowney.github.io/ThinkPython/chap12.html#section-debugging-12
https://allendowney.github.io/ThinkPython/chap11.html#section-debugging-11
https://allendowney.github.io/ThinkPython/chap14.html#section-debugging-14
https://allendowney.github.io/ThinkPython/chap06.html#section-incremental
https://allendowney.github.io/ThinkPython/chap04.html#section-encapsulation

As you continue your programming journey, you don’t have to go alone! If you live in or near a
city, there’s a good chance there is a Python user group you can join. These groups are usually
friendly to beginners, so don’t be afraid. If there is no group near you, you might be able to join
events remotely. Also, keep an eye out for regional Python conferences.

One of the best ways to improve your programming skills is to learn another language. If you
are interested in statistics and data science, you might want to learn R. But I particularly
recommend learning a functional language like Racket or Elixir. Functional programming
requires a different kind of thinking, which changes the way you think about programs.

Good luck!

Think Python: 3rd Edition

Copyright 2024 Allen B. Downey

Code license: MIT License

Text license: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

https://allendowney.github.io/ThinkPython/index.html
https://allendowney.com/
https://mit-license.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/

	aa-toc.pdf
	Table of Contents
	Detailed Table of Contents

	ch00.pdf
	ch01.pdf
	ch02.pdf
	ch03.pdf
	ch04.pdf
	ch05.pdf
	ch06.pdf
	ch07.pdf
	ch08.pdf
	ch09.pdf
	ch10.pdf
	ch11.pdf
	ch12.pdf
	ch13.pdf
	ch14.pdf
	ch15.pdf
	ch16.pdf
	ch17.pdf
	ch18.pdf
	ch19.pdf

