COMP130 Practice Lab Exam
Instructor: John MacCormick

Total points on exam: 115
Time allowed: 120 minutes

Create a new Python script called practicelLabExam.py. Write all answers in this script, and submit this
script to Moodle before the end of the exam.

Qu 1. (10 points) Write a function with the signature print_6 multiples(n). The function should print
out the first six multiples of the parameter n on separate lines. Example: the output for
print_6_multiples(5) should be

5

10
15
20
25
30

Qu 2. (10 points) Write a new function that generalizes your answer to the previous question by adding
an extra parameter. The signature will be print_multiples2(n, num multiples). The function should
print out the first num_multiples multiples of the parameter n on separate lines. Example: the output
for print_multiples(8, 3) should be

8
16
24

Qu 3. (10 points) Write a new function that is the same as in the previous question, but the sum of all
multiples printed is also printed at the end. The signature will be print_sum_of_multiples(n,
num_multiples). Example: the output for print_sum_of_multiples(7, 3) should be

7

14

21

Sum is 42

Qu 4. (10 points) Write a new function that is the same as in Question 2, but only multiples that are even
numbers are printed. The signature will be print_even_multiples(n, num_multiples). Note that the
parameter num_multiples represents the number of candidates that might be printed out, but only
those that are even numbers will actually be printed. Example: the output for
print_even_multiples(9, 10) should be

18
36
54
72
90

The remaining questions in this exam ask you to write
functions using the turtle module. The questions will
involve a shape that we call a funny square. A funny square
is the same as a regular square except that it has small
square-shaped indentations in each side, as shown on the
right.

The edge length of a funny square is the number of pixels
from one of the corners to the start of an adjacent
indentation, and the indentation length is the number of
pixels on each side of an indentation, as shown on the
right.

The indentation length is always half of the edge length.

indentation
€« length

I

edge length

Qu 5. (20 points) Write a function with signature funny_squarel(t, x, y) which draws a funny square
whose bottom left corner is at position (x, y), with edge length 100 pixels. The first parameter, t, should
be a Turtle object that is used for the drawing. Example: the output of funny_squarel(t, 200, -50)

should be as shown below.

Python Turtle Graphics

e

In the remaining questions, as in the previous question, the parameter t will always refer to a Turtle

object used for the drawing.

Useful hint: For rapid experimentation, turn off turtle animation by executing the statement

turtle.tracer(@) before drawing with the turtle. At the end of your program, use turtle.update()

to ensure that everything is drawn to the screen.

Qu 6. (10 points) Write a new function that generalizes the function in the previous question. The new
signature is funny_square2(t, x, y, edge_len). The new parameter, edge_len, specifies the edge
length of the funny square in pixels. Example: the output of funny square2(t, -250, 100, 60)
should be as shown below.

python Turtle Graphics - o x

LI\

Qu 7. (20 points) Write a new function whose signature is funny_square3(t, x, y, edge len).The
parameters have the same meaning as in the previous question, but now the color of the funny square
can be different. The color is chosen according to the following rule. If x and y are both even, the color is
red. If x and y are both odd, the color is green. Otherwise, the color is blue. However, if the edge length
is a multiple of 10, then the color is black regardless of the x and y values. Example: the output of
funny_square3(t, -55, -20, 153) should be as shown below.

Python Turtle Graphics o x

||

|

Qu 8. (20 points) Write a new function with the signature many_funny_squares(t, num_squares). This
function will draw num_squares funny squares (in the appropriate colors as described in the previous
guestion) at random locations and with random sizes. Specifically, for each funny square drawn: the x-
and y-coordinates should be between —200 and 200 inclusive; and the edge length should be chosen
randomly between 5 and 50 pixels inclusive.

Example: Here is a typical output for many_funny squares(t, 50) -- although your output will differ
due to randomness.

i Python Turtle Graphics - [m} X

Note: The final question below is more challenging and time-consuming than the previous ones, but it is
worth only a small amount of credit. Please do not attempt this question until you have completed all
previous questions, tested them carefully, and submitted your practiceLabExam.py file to Moodle.

Qu 9. (5 points) Create a new Python script called refactored. py. You will submit this file to Moodle in
addition to the practicelLabExam. py file. Copy all code from practicelabExam.py into
refactored.py. In the new script, factor out all repeated code from the functions for drawing funny
squares. Use the software engineering techniques we have studied to refactor the code into high-quality
source code that is reusable, maintainable, and extensible.

