
COMP130 Practice Lab Exam

Instructor: John MacCormick

Total points on exam: 115

Time allowed: 120 minutes

Create a new Python script called practiceLabExam.py. Write all answers in this script, and submit this

script to Moodle before the end of the exam.

Qu 1. (10 points) Write a function with the signature print_6_multiples(n). The function should print

out the first six multiples of the parameter n on separate lines. Example: the output for

print_6_multiples(5) should be

5

10

15

20

25

30

Qu 2. (10 points) Write a new function that generalizes your answer to the previous question by adding

an extra parameter. The signature will be print_multiples2(n, num_multiples). The function should

print out the first num_multiples multiples of the parameter n on separate lines. Example: the output

for print_multiples(8, 3) should be

8

16

24

Qu 3. (10 points) Write a new function that is the same as in the previous question, but the sum of all

multiples printed is also printed at the end. The signature will be print_sum_of_multiples(n,

num_multiples). Example: the output for print_sum_of_multiples(7, 3) should be

7

14

21

Sum is 42

Qu 4. (10 points) Write a new function that is the same as in Question 2, but only multiples that are even

numbers are printed. The signature will be print_even_multiples(n, num_multiples). Note that the

parameter num_multiples represents the number of candidates that might be printed out, but only

those that are even numbers will actually be printed. Example: the output for

print_even_multiples(9, 10) should be

18

36

54

72

90

The remaining questions in this exam ask you to write

functions using the turtle module. The questions will

involve a shape that we call a funny square. A funny square

is the same as a regular square except that it has small

square-shaped indentations in each side, as shown on the

right.

The edge length of a funny square is the number of pixels

from one of the corners to the start of an adjacent

indentation, and the indentation length is the number of

pixels on each side of an indentation, as shown on the

right.

The indentation length is always half of the edge length.

Qu 5. (20 points) Write a function with signature funny_square1(t, x, y) which draws a funny square

whose bottom left corner is at position (x, y), with edge length 100 pixels. The first parameter, t, should

be a Turtle object that is used for the drawing. Example: the output of funny_square1(t, 200, -50)

should be as shown below.

In the remaining questions, as in the previous question, the parameter t will always refer to a Turtle

object used for the drawing.

Useful hint: For rapid experimentation, turn off turtle animation by executing the statement

turtle.tracer(0) before drawing with the turtle. At the end of your program, use turtle.update()

to ensure that everything is drawn to the screen.

Qu 6. (10 points) Write a new function that generalizes the function in the previous question. The new

signature is funny_square2(t, x, y, edge_len). The new parameter, edge_len, specifies the edge

length of the funny square in pixels. Example: the output of funny_square2(t, -250, 100, 60)

should be as shown below.

Qu 7. (20 points) Write a new function whose signature is funny_square3(t, x, y, edge_len). The

parameters have the same meaning as in the previous question, but now the color of the funny square

can be different. The color is chosen according to the following rule. If x and y are both even, the color is

red. If x and y are both odd, the color is green. Otherwise, the color is blue. However, if the edge length

is a multiple of 10, then the color is black regardless of the x and y values. Example: the output of

funny_square3(t, -55, -20, 153) should be as shown below.

Qu 8. (20 points) Write a new function with the signature many_funny_squares(t, num_squares). This

function will draw num_squares funny squares (in the appropriate colors as described in the previous

question) at random locations and with random sizes. Specifically, for each funny square drawn: the x-

and y-coordinates should be between −200 and 200 inclusive; and the edge length should be chosen

randomly between 5 and 50 pixels inclusive.

Example: Here is a typical output for many_funny_squares(t, 50) -- although your output will differ

due to randomness.

Note: The final question below is more challenging and time-consuming than the previous ones, but it is

worth only a small amount of credit. Please do not attempt this question until you have completed all

previous questions, tested them carefully, and submitted your practiceLabExam.py file to Moodle.

Qu 9. (5 points) Create a new Python script called refactored.py. You will submit this file to Moodle in

addition to the practiceLabExam.py file. Copy all code from practiceLabExam.py into

refactored.py. In the new script, factor out all repeated code from the functions for drawing funny

squares. Use the software engineering techniques we have studied to refactor the code into high-quality

source code that is reusable, maintainable, and extensible.

